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Neuropathology

2



Learning Objectives

• Explain the normal turnover and recycling of proteins and 
lipids in the central nervous system

• Explain what happens when the recycling systems fail

• Give three examples of storage disorders of the CNS

• Explain a current approach to studying storage disorders
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Brain
disease
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https://www.roche.com/sustainability/philanthropy/science_education/pathways.htm.  1965-2025 ??discontinued
See also
http://astrojan.nhely.hu/protein/bohr5.htm
https://www.vmh.life/#reconmap2

5

https://www.roche.com/sustainability/philanthropy/science_education/pathways.htm
http://astrojan.nhely.hu/protein/bohr5.htm


6



Enzymes

• Scientific databases list >3,400 human enzymes with specific 
commission numbers, the majority of which are non-digestive

• https://www.genome.jp/kegg/annotation/enzyme.html

• https://enzyme.expasy.org/

• https://www.brenda-enzymes.org/
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• OMIM - Online Mendelian Inheritance in Man 
(https://www.ncbi.nlm.nih.gov/omim)

• continuously updated catalog of human genes and 
genetic disorders and traits, with a particular focus on 
the gene-phenotype relationship

• >25,000 entries

– >9,000 represent phenotypes

– >15,000 represent gene mutations

8

https://www.ncbi.nlm.nih.gov/omim


9



RNA expression level indicates 
mRNA abundance, a reflection 
of turnover and ongoing 
necessity

Protein expression score is 
based on immunostaining; in 
the absence of high RNA 
expression this might be 
misleading 
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THE PRINCIPLES ARE MORE IMPORTANT THAN 
THE DETAILS BECAUSE IT IS IMPOSSIBLE (FOR 
NON-AI ENTITIES) TO KNOW ALL
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All constituents of tissue are either incorporated or 
produced locally and must be degraded / recycled / 
disposed / expelled.

Failure of disposal can result from abnormal disposal 
system or abnormal waste that the disposal system 
cannot handle.
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Materials not dealt with may be stored in the garbage 
piles in a non-toxic way (e.g. lipofuscin, corpora 
amylacea), or they may accumulate and become toxic

Even if aggregates themselves are not toxic, 
accumulation indicates a blocked metabolic pathway, 
the failure of which interferes with normal cell 
function / survival
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Cell turnover in the normal CNS – generally low

• Difficult to study directly in humans
• Frisen et al. studied 14C incorporation (radioactive fallout) in human brains
• Most experiments based on 3H-thymidine administration, which is incorporated 

into DNA (mice most common)
• Younger animals have higher turnover rates (i.e. during growth)
• In adult mice (~9 months) +/- humans

– Neurons postmitotic (dentate granule neurons ???)
– Astrocytes: 0.4% per day (mouse McCarthy & Leblond 1988)
– Oligodendrocytes: 0.04% per day (mouse ibid); 0.32% per year in human (Yeung et al. 

2019)
– Endothelial cells: 0.3% per day, longevity 1 to >10 years (Hobson & Denekamp 1984)
– Microglia: 0.1% per day (human IdU and 14C; Reu et al. 2017)

• Mitochondrial turnover: months (Poovathingal et al. 2012)
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DNA synthesis and turnover

• Chromosome replication during cell division / mitotic activity
• Unscheduled DNA synthesis - DNA repair that occurs in response 

to DNA damage, independent of the normal cell cycle
• In mouse brain, nuclear DNA half life (overall) ~20 days (Williams 

et al. 1982)
• Faulty DNA repair associated with various neurological diseases 

and cancer
• Some nucleosides are recycled, some eliminated as uric acid
• Excess uric acid can cause gout, which carries increased risk of 

neurodegenerative disease (Topiwala et al. 2023)

• Ribonucleases degrade mRNA (and other forms) e.g. after 
protein synthesis

• If cell dies, most DNA is recycled locally - <1% of brain cell DNA 
reaches blood plasma as cell free DNA (Sender et al. 2024)
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Protein synthesis and turnover

• Essential amino acids are 
transported across the blood-
brain barrier (BBB) via specific 
carrier systems; many are solute 
carrier (SLC) family
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Post-translational modifications
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• Radioactive labelling of amino acids can give 
information about protein synthesis and 
degradation

• Lajtha et al. 1950s-1970s
• Radiolabeled amino acid (e.g. 14C leucine, 14C 

lysine, 14C tyrosine) studies in young and adult 
mice

• Rapid (small proportion) and slow turnover 
proteins

• Brain - 5.7% of proteins have half-life of 15 hours 
and 94.3% have half-life of >10 days

• In adult mice, >97% of protein has turned over in 
14-18 days

• Turnover of proteoglycan component may be 
same as protein backbone or faster (e.g. 
Roquemore et al. 1996)
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• In adult rat brain, almost 5% of protein breaks down daily (Goldspink 1988)
• Some proteins more stable; myelin basic protein (MBP) has >95% turnover after 3 months 

(Wood 1971)
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• Modern proteomic analysis of adult mouse brain 
(11,000 proteins and 40,000 phospho-sites in 9 brain 
regions)

• Protein abundance and lifetime together define tissue 
proteome function and stability

• Protein lifetime strongly correlates with protein-
protein interactions in tissues

• Site-specific phosphorylation functionally shapes in 
vivo protein lifetime

• most of the proteome (66–80%) has a half life <10 
days

• nine brain regions had higher median protein half life 
(5.89 ± 0.42 days) than other tissues

• 49 brain proteins in top 5% most long lived; enriched 
in tricarboxylic acid cycle (TCA), respiratory electron 
transport, myelin sheath, and chromatin assembly

• Examples: GFAP and synaptophysin ~15 days, MBP 
80—180 days

• Glycoproteomics reveal major protein modification differences in brain compared to other organs (Noel et al. 2025 
doi.org/10.1093/glycob/cwaf054)
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Lipid synthesis and turnover

• Lipid is major constituent of cell membranes 
(phospholipid bilayer with embedded proteins)

• Lipid components recycle at different rates
• Modern lipidomic assessment of lipid turnover
• Fatty acid turnover is slowest in brain (of mouse); e.g. 

palmitate t1/2 3.1 days
• See

– Chen et al. 2023 doi.org/10.1016/j.cmet.2023.03.007
– Kostyukevich et al. 2023 doi.org/10.3390/ijms241411725
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Myelin lipid turnover

• Myelin is specialized concentration of oligodendrocyte 
membranes

• Two metabolic pools of phosphatidylcholine (PC) in 
myelin, one with a half life of the order of days, and 
another with a half life of the order of weeks (Smith & 
Eng 1965; Morell & Ousley 1994).

• Compact myelin is more stable than other cell 
membranes (Buscham 2019)
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Glycogen synthesis and turnover

• D-glucose crosses BBB via GLUT1 
transporter

• Incorporated into glycogen, mainly in 
astrocytes, within 1-6 hours

• Rapid turnover of astrocytic 
glycogen in response to local 
neuronal activity (Wu 2019)

• 14C-glucose radiolabel experiments 
(Coxon 1965; Strang 1971) show 
~50% degradation in 1 day 
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In vivo glycogen analysis using magnetic resonance 
spectroscopy (MRS)

• 13C-glucose infused into animals (Morgenthaler 2008; van 
Heeswijk 2010)

• In humans, complete turnover of glycogen requires 3–5 days 
(Oz et al. 2007)
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Every cell constituent degrades and must be repaired or disposed 
of through cellular waste recycling and disposal mechanisms

• Autosome / lysosome complex

• Peroxisome 

• Proteosome

• Autophagy / mitophagy

• (Glymphatic clearance – after waste products are expelled 
from cells)
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Autophagy / phagocytosis / lysosome

• Autophagy – orderly removal of unnecessary or dysfunctional 
cell components through a lysosome-dependent regulated 
mechanism

• Mitophagy – recycling of mitochondria

• Phagocytosis – engulfment of extracellular material for removal 
and recycling of debris
– “Professional” phagocytes of the immune system include microglia and 

monocyte/macrophages

– Astrocytes also play a limited role in phagocytosis (engulfment by 
endocytosis and pinocytosis) (Konishi et al. 2022 DOI: 
10.1002/glia.24145)
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Lysosomes

• Membrane bound organelles (0.1-1.2 μm) that contain >60 
hydrolytic enzymes to digest debris

• Formed in ER / Golgi

• Lysosomes fuse with endosomes or phagosomes - dependent on 
expression of targeting proteins on surfaces of latter (e.g. 
lipidated LC3 on autophagosomes)

27



Neuroglial lysosomal exocytosis

• Most neuron – astroglial exocytosis is non-
lysosomal exchange related to synaptic vesicle 
release and recycling

• Lysosomal contents can be released by exocytosis 
from neurons at synapses for synaptic remodeling 
(plasticity) (Ibata & Yuzaki 2021 
doi.org/10.1016/j.neures.2021.03.011)

• Reactive astrocytes can release signaling molecules 
and enzymes necessary for tissue remodeling 
(Mielnicka & Michaluk 2021 
doi.org/10.3390/biom11091367)
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Peroxisomes

• Small (0.1–1 μm diameter) membrane 
bound organelles

• Contain ~60 enzymes

• Major functions:
– hydrogen peroxide (H2O2) production and 

elimination (via catalase)

– oxidative breakdown of very long chain fatty 
acids

– synthesis of plasmalogens, including 
ethanolamine glycerophospholipids for 
myelin sheaths

• See Fujiki et al. 2022 
doi.org/10.1016/j.bbamcr.2022.119330
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Proteasome – ubiquitin system

• Proteasomes are nuclear and 
cytosolic protein complexes that 
degrade ubiquitin-tagged proteins by 
proteolysis

• Resulting peptides are hydrolyzed by 
downstream cytosolic 
aminopeptidases

• Important in neurodegenerative 
diseases (Davidson & Pickering 2023  
DOI 10.3389/fcell.2023.1124907 )
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“Normal” tissue waste storage

Cities have landfill 
sites – most cells, 
especially long lived 
ones, have equivalent 
structures
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Lipofuscin
• Mixture of highly oxidized, cross-linked 

macromolecules including proteins (30–
70%), lipids (20–50%), metals cations (2%), 
and sugar residues

• Cannot be degraded or cleared by 
exocytosis

• Accumulate within lysosomes and cell 
cytoplasm during normal aging (and more in 
disease states)

• Typically yellowish; autofluorescent
• Ceroid = lipofuscin; term “ceroid” used by 

some to mean pathological
•  (reviewed by Moreno-García 2018 doi: 

10.3389/fnins.2018.00464)
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Corpora amylacea

• Lamellated “pearls”; mainly within astrocytes
• Glucose polymer (polyglucosan) >90% + protein 
• Stain with periodic-acid Schiff (PAS) et al.
• Degenerating material (from neuron) incorporated 

into astrocytes; may be recirculated through CSF 
and then macrophage digestion

• Reviews by Auge 2017, DOI: 10.1038/srep41807
• Riba 2019, doi.org/10.1073/pnas.1913741116
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Storage diseases of the nervous system

Brain
disease

34



Categorization of metabolic / enzymatic disease

• By metabolic ‘pathway’ involved (e.g. lipid metabolism, amino 
acid metabolism, energy supply)

• By organelle involved (e.g. lysosomal, mitochondrial)

• By end result (e.g. leukodystrophy, storage disorder, epilepsy)

• By inheritance (e.g. X linked, autosomal dominant, autosomal 
recessive)

• Many carry eponymous names of people who described the 
disease
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Cellular storage material

Particles of aggregated 
protein, lipid, or 
carbohydrate

Size is context specific, but 
generally visible within cells 
at the light microscopic level
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Why do storage disorders often present in youth?
• Growing up is hard
• Homeostatic (proteostasis etc.) mechanisms are stressed by developmental physiology
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1995
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Glycogen storage  - Lafora (polyglucosan body) disease

• Most often caused by loss-of-function mutations in 
EPM2A and NHLRC1 (encode laforin and malin, 
respectively)

• Normal – malin (E3 ubiquitin ligase) binds laforin 
(dual specificity protein phosphatase) to protect 
against intracytoplasmic polyglucosan accumulation

• Mutations result in poorly branched, 
hyperphosphorylated glycogen that and accumulates 
into Lafora bodies (in brain, liver, myocytes, 
myoepithelial glands of sweat glands).

• Seizures followed by decline and death in ~10 years
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Peroxisome dysfunction

• Peroxisome biogenesis (multiple protein deficiencies, abnormal 
peroxisome morphology)
– Zellweger spectrum

– Neonatal adrenoleukodystrophy

– Refsum disease, infantile

• Single protein deficiency (normal peroxisome morphology)
– Adrenoleukodystrophy

– Refsum disease, adult
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Zellweger Syndrome (Cerebro-hepato-renal syndrome)

• most severe of the peroxisomal biogenesis disorders

• homozygous or compound heterozygous mutation PEX1 gene

• Evident at birth with distinctive facial features and skeletal 
abnormalities

• Brain abnormalities include pachygyria, abnormal lipid membrane like 
autophagosomes (Faust 2018)

41



• PEX1 protein expression is low in brain
• relative disease effect on organs is not always 

easily explained simply by normal protein levels

PEX1 is involved in peroxisome protein import
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Mucopolysaccharidoses (MPS)

• Clinical onset and severity typically depends on enzyme activity level
• Progressive neurologic decline in childhood or adulthood
• MPS I (3 sub-groups: Hurler, Hurler-Scheie, and Scheie syndromes); absent or 

deficient alpha-L-iduronidase (break down of glycosaminoglycans dermatan 
sulphate and heparan sulphate)

• MPS II (Hunter syndrome); X-linked; absent iduronate-2-sulfatase
• MPS III (Sanfilippo syndrome, 4 types A - D); deficient break down of heparan 

sulfate
• MPS IV (Morquio syndrome); missing or deficient N-acetylgalactosamine-6-

sulfatase (Type A) or beta-galactosidase (Type B) needed to break down 
chondroitin-6-sulfate and keratan sulfate. Skeletal dysplasia (CNS not directly 
affected)

• Also MPS VI to IX
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MPS I case

• Female, large head in infancy, severe hydrocephalus 
shunted at 5 months

• Diagnosed with MPS type I (alpha-iduronidase 
deficiency; Hurler syndrome; IDUA mutation)

• stem cell transplantation at 1 year with normalization 
of circulating cell alpha-iduronidase activity. 

• infrequent seizures, intellectual impairment, talkative; 
ambulate with walker / wheelchair (scoliosis)

• Died at 20 years age; coarse facial features
• Brain small 1162g; shunted small ventricles, normal 

white matter
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MPS I (marrow transplant) histology

Abnormal storage in cortical neurons

LFB – H&E      PAS + hematoxylin
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IDUA is abundant in brain, mainly in neurons
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MPS II (Hunter disease; iduronate 2-sulfatase deficiency; IDS 
mutation)

• 12 year male with severe neurologic decline

• Ventricles large, white matter perivascular spaces enlarged
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MPS II

Thick dura / arachnoid

White matter well myelinated, but perivascular 
spaces filled with macrophages
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Neuron somata in neocortex (et al.) and Purkinje dendrites packed with Luxol fast blue stained storage material
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MPS III (Sanfilippo disease) 

• 4 different genes coding for lysosomal enzymes that breakdown heparan sulfate (HS)
• progressive accumulation of partially degraded HS in lysosomes, which ultimately damages the cells
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MPS III (11 year male) – LFB stained storage material in Purkinje dendrites
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MPS IV (Morquio)

• GALNS gene (MPS IVA) or GLB1 gene (MPS IVB)

• Mainly skeletal (brain not directly affected)

• Despite the clinical syndrome, both proteins are highly 
expressed in brain
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MPS IV case

• 33 year male

• Severe scoliosis, short stature, cognitively normal

• Atlanto-axial instability since age 16 years – occiput to C2 fusion

• Respiratory arrest during dental procedure

• At autopsy, severe atlanto-occipital instability with C1-C2 cervical spinal cord 
compression

Medulla oblongata
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Gaucher disease 

• Mutation in GBA1 gene, which codes for lysosomal 
glucocerebrosidase (glucosylceramidase beta 1)

• Autosomal recessive

• Type 1 - varied phenotype; storage of lipids in spleen, liver, and 
bones (most cases)

• Type 2 - severe early onset and rapidly fatal form that affects 
the brain (rare)

• Type 3 - skeletal problems, enlarged liver and spleen, seizures, 
and neurological decline, death in adolescence or early 
adulthood

54



Gaucher type 2, perinatal

• Born at 35 weeks gestation with a prenatal diagnosis of fetal 
akinesia, abnormal facial features, and hepatomegaly

• Died within 2 hours

Periodic acid Schiff (PAS)+ inclusion 
material in perivascular macrophages

EM showed granular lysosomal debris 
but NOT typical Gaucher cells.

See Frosk et al. Neuropathol Appl 
Neurobiol. 2014 40:946-50. doi: 
10.1111/nan.12122.
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Gaucher type 3

• 22 year female with seizures for 4 years; died of progressive liver failure

Slight decrease cerebellar myelin (LFB H&E) Perivascular “Gaucher” cells (macrophages with lamellar inclusions)
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GBA1 highly expressed in all organs and in 
almost all cell types
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Krabbe disease (globoid cell leukodystrophy)

• galatocerebroside-ß-
galactosidase enzyme deficiency 
(lysosomal)

• GALC mutation
• Failure to break down 

membrane lipids 
(galactocerebroside and 
galactosylceramide)

• Accumulation of toxic lipid, 
psychosine
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• 19 week fetus with GALC mutation

• Globoid cells in spinal cord
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• Female developmental delay noted at 6 months
• 17 months speaking 5-10 words, regressed at 20 months
• Sural nerve biopsy at 22 months – large axons with thin myelin, Schwann cells with 

needle shaped inclusions characteristic of Krabbe disease
• Died at 9 years, brain small (820g) with severe white matter atrophy and spongiform 

degeneration in cortex, but no globoid cells in any organ
• Del Bigio et al. 2004 Neuropediatrics. 2004 35:297-301. doi: 10.1055/s-2004-821172
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• 12-year-old boy with severe developmental delay, scoliosis, peripheral neuropathy, spasticity, intractable 
seizures, and visual impairment

• Galactocerebroside-ß-galactosidase enzyme deficiency.
• Heterozygous GALC mutations.
• Severe degeneration of deep cerebral white matter and descending tracts.
• Regional atrophy of cerebellum
• Absence of globoid cells - macrophages do not necessarily persist in long survivors
• Del Bigio MR. Pediatr Neurol. 2018 82:51-52. doi: 10.1016/j.pediatrneurol.2018.03.002

MRI T2 weighted  Frontal cerebrum (LFB H&E)                             White matter (CD68)
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Neuronal ceroid lipofuscinosis (NCL)

• old classification of NCL divided the condition into four types  based 
upon age of onset, new classifications divide it by the associated 
gene:
– infantile (most PPT1 gene (previously CLN1), also CTSD), onset 6 months to 

2 years (Santavuori–Haltia disease)
– late infantile (most TPP1 gene (previously CLN2), also CLN5 CLN6 CLN8), 

onset 2 to 4 years (Jansky–Bielschowsky disease)
– juvenile (CLN3 gene), onset 5 to 8 years (Batten disease)
– adult (various mutations)

• All are highly expressed in brain tissue (glia and neurons) and most 
other organ systems
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PPT1 (CLN1) expressed in all organs, 
in Golgi and lysosomes
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Late infantile onset NCL

Atrophic brain   Negligible myelin  abundant PAS+ storage material in frontal cortex
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Etc. etc.
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CNS storage disorder investigation
• In the past:

– Metabolic / storage disease suspected by clinical history and neurologic 
phenotype

– ± enzyme analysis
– ± muscle / nerve / skin / cornea biopsy ± electron microscopy
– Autopsy to “prove” disease with microscopy, electron microscopy etc.

• Current:
– Clinical suspicion → genefic tesfing
– Possible marrow transplant or enzyme replacement therapy
– Clinical and MR imaging monitoring of CNS status
– Autopsy rare – unless:

• tissue donation for research
• unexpected death requiring medicolegal autopsy
• fetal / perinatal case not yet diagnosed
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Phenotypic variability – gene correlation

• Age of onset / severity typically depends on severity of enzyme 
deficiency; e.g. 0% activity could be embryonic lethal or present 
early, 50% activity might present in adolescence or adulthood

• Factors include:
– specific mutation
– multiple genetic variants (e.g. autosomal recessive disorder with two 

different mutations) 
– modifier genes
– epigenetic modifications
– random (stochastic) events in gene expression
– environmental influences

• (Girirajan & Eichler 2010 doi:10.1093/hmg/ddq366)
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Phenotypic variability – storage diseases

• Classic storage material might not persist in chronic cases 
(macrophages emigrate, neurons die)

• Specificity of classic electron microscopic features may be 
overstated
– e.g. Goebel et al. Mechan. Ageing Devel. 10:53-70, 1979

– Mole et al. Correlations between genotype, ultrastructural morphology 
and clinical phenotype in the neuronal ceroid lipofuscinoses. 
Neurogenetics 6:107-26, 2005.

• Organ / tissue phenotype is not always obviously explained by 
relevant gene / protein distribution.
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Neurodegenerative diseases of aging

• In some respects, these are similar to pediatric storage disorders

• Abnormal processing (recycling system or mutant protein), 
accumulation, toxicity)

• Autophagy–lysosomal-associated neuron death in 
neurodegenerative disease (Nixon 2024 doi.org/10.1007/s00401-
024-02799-7)
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Other useful references

• Ferreira et al. Lysosomal storage diseases. Translat Sci Rare Dis 2:1–71, 2017.
• Ellison et al. Advances in therapies for neurological lysosomal storage 

disorders. J Inherit Metab Dis. 46:874–905, 2023
• Spencer et al. Non-canonical roles of lysosomes in neurons. Trends Neurosci. 

2025 doi: 10.1016/j.tins.2025.10.009. 
• Viana et al. Brain Pathology in Mucopolysaccharidoses (MPS) Patients with 

Neurological Forms. J. Clin. Med. 2020, 9:396; doi:10.3390/jcm9020396
• Bosch et al. Neuroinflammatory paradigms in lysosomal storage diseases. 

Front. Neurosci.9:417, 2015; doi: 10.3389/fnins.2015.00417
• Carmichael et al. Peroxisome dynamics and inter-organelle interactions in 

neuronal health and disease. Front. Mol. Neurosci. 18, 2025; doi: 
10.3389/fnmol.2025.1603632
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