## Neural Tube Closure and Associated Defects

Jeffrey Golden, MD Vice Dean, Research and Graduate Education Cedars Sinai Medical Center





AMERICAN ASSOCIATION OF NEUROPATHOLOGISTS

### **Disclosures**

• I have no relevant financial relationships to disclose



### **Learning Objectives**

### At the end of this activity learners should be able to:

- Describe the process of neural tube closure
- Explain the mechanisms of neural tube closure defects
- Categorize different types of neural tube closure defects



# DEFINITIONS

### **Cranial**

Anencephaly Encephalocele

Iniecephaly

Cranial meningocele Acalvaria Craniorachischisis

### **Spinal**

Spina Bifida occulta Spina Bifida cystica Myelomeningocele Myelocele Meningocele Myelocystocele Rachischisis

Tethered cord









Gilbert, Developmental Biology, 1994



Gilbert, Developmental Biology, 1994















Ybot-Gonzalez et al, Development, 2007



I N





























































#### Classification according to the site



Classification according to the content



Example of different size of cephaloceles



#### Avagliano et al, Birth Defects Res 2019



#### Table 1:

#### Modifiable risk factors for NTDs

| Risk Factor                                                   | Action                                                                                                                                                                                                                                                                     | Risk                                                                                             | References                                                                                                                                                                                                             |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Maternal diabetes                                             | Teratogenic effect due to embryonic exposure to<br>high glucose concentrations leading to<br>increased cell death in the neuroepithelium                                                                                                                                   | 2-10-fold increase                                                                               | (Ray, 2001; Shaw et al., 2003; Yazdy,<br>Mitchell, Liu, & Werler, 2011)                                                                                                                                                |  |
| Maternal obesity                                              | Teratogenic effect due to embryonic exposure to<br>hyperinsulinemia, metabolic syndrome, and<br>oxidative stress related to adiposity                                                                                                                                      | 1.5-3.5-fold<br>increase.<br>The risk increases<br>with increased<br>maternal body mass<br>index | (Anderson et al., 2005; Carmichael,<br>Rasmussen, Lammer, Ma, & Shaw, 2010;<br>Dietl, 2005; Hendricks, Nuno, Suarez, &<br>Larsen, 2001; Shaw, Velie, & Schaffer,<br>1996; Werler, Louik, Shapiro, & Mitchell,<br>1996) |  |
| Maternal<br>Hyperthermia<br>(sauna, hot water<br>tube, fever) | Teratogenic effect due to embryonic exposure to heat stress                                                                                                                                                                                                                | 2-fold increase                                                                                  | (Moretti, Bar-Oz, Fried, & Koren, 2005;<br>Suarez, Felkner, & Hendricks, 2004; Waller<br>et al., 2017)                                                                                                                 |  |
| Drugs (particularly valproate)                                | Teratogenic effect due to embryonic exposure to<br>valproate action as inhibitor of histone<br>deacetylases, disturbing the balance of protein<br>acetylation and deacetylation, leading to<br>neurulation failure                                                         | 10-fold increase                                                                                 | (Kanai, Sawa, Chen, Leeds, & Chuang,<br>2004; Lammer, Sever, & Oakley, 1987;<br>Meador et al., 2006; Pai et al., 2015;<br>Yildirim et al., 2003)                                                                       |  |
| Inadequate<br>maternal<br>nutritional status                  | Teratogenic effect due to embryonic exposure to<br>low folate intake, low methionine intake, low<br>zinc intake, low serum vitamin B12 level, low<br>vitamin C level, caffeine abuse, alcohol use,<br>smoking, all conditions disturbing the folate-<br>related metabolism | Undetermined                                                                                     | (Grewal, Carmichael, Ma, Lammer, &<br>Shaw, 2008; Kirke et al., 1993; Ray &<br>Blom, 2003; Schmidt et al., 2009; Suarez,<br>Hendricks, Felkner, & Gunter, 2003; Velie<br>et al., 1999)                                 |  |

Avagliano et al, Birth Defects Res 2019



#### Table 2:

Differential diagnosis between meningocele, myelomeningocele and myelocele

|                                                                         | Meningocele | Myelomeningocele | Myelocele |
|-------------------------------------------------------------------------|-------------|------------------|-----------|
| Type of defect                                                          | Closed      | Open             | Open      |
| Ultrasound aspects                                                      |             |                  |           |
| Posterior anechogenic cystic mass (sac-like protrusion) from the spine  | +           | +                | -         |
| Presence of septa in the sac                                            | -           | +                | //        |
| Abnormality of vertebral bones (absence of the arches)                  | +           | +                | +         |
| Abnormal shape of skull (lemon sign)                                    | -           | +                | +         |
| Abnormal shape of cerebellum (banana sign)                              | -           | +                | +         |
| Association with Chiari type II malformation                            | -           | +                | +         |
| Association with hydrocephalus                                          | -           | +                | +         |
| Association with clubfoot                                               | -           | +                | +         |
| Macroscopic aspects of the lesion                                       |             |                  |           |
| Absence of vertebral arches                                             | +           | +                | +         |
| Meningeal herniation though the bones defect                            | +           | +                | -         |
| Presence of neural tissues in the meningeal sac (medulla and/or nerves) | _           | +                | //        |
| External exposition of placode                                          | _           | +                | +         |
| Covered by skin                                                         | +           | -                | -         |



Avagliano et al, Birth Defects Res 2019



Lee and Gleeson, Trends in Neurosci 2020

Greene and Copp, Annu Rev Neurosci 2014





#### Lee and Gleeson, Trends in Neurosci 2020





Lee and Gleeson, Trends in Neurosci 2020

































Figure 8











#### Figure 7













# Thank you and any question?



