Rare Gliomas Jason T. Huse, MD, PhD Departments of Pathology and Translational Molecular Pathology

University of Texas MD Anderson Cancer Center

AMERICAN ASSOCIATION OF NEUROPATHOLOGISTS

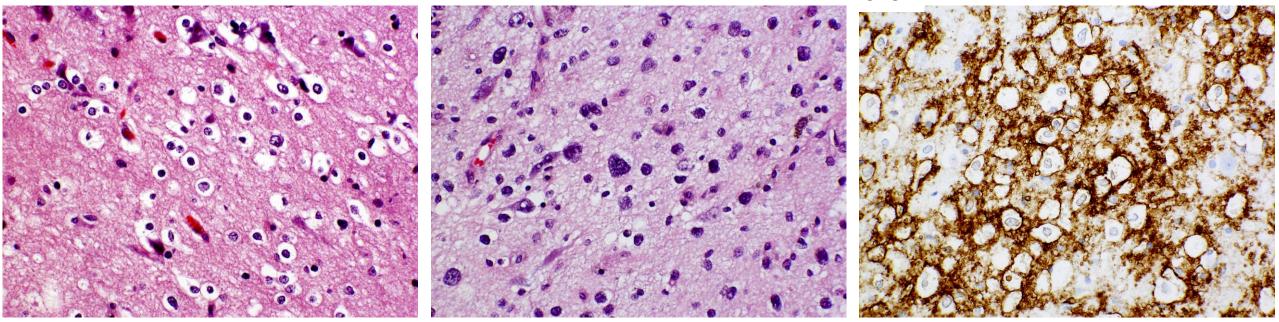
• I have no relevant financial relationships to disclose

Learning Objectives

- Classify rare gliomas into broad clinical, histopathological, and molecular categories
- Distinguish the various rare glioma entities from each other
- Summarize the key molecular alterations defining rare glioma subgroups

What I'm NOT going to talk about

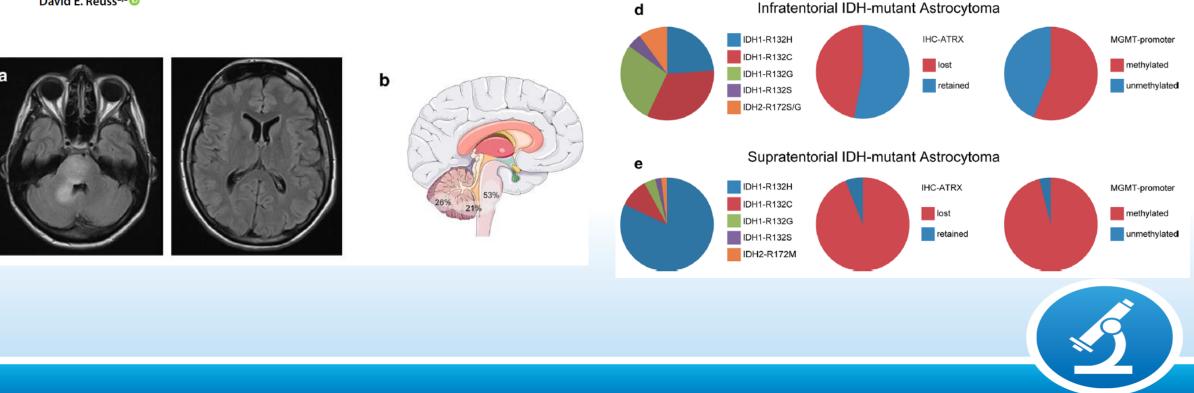
- IDH-wildtype GBM of adults
- IDH-mutant astrocytoma
- IDH-mutant and 1p/19q codeleted oligodendroglioma
- Glioneuronal and neuronal tumors
- Pilocytic astrocytoma


What I AM going to talk about

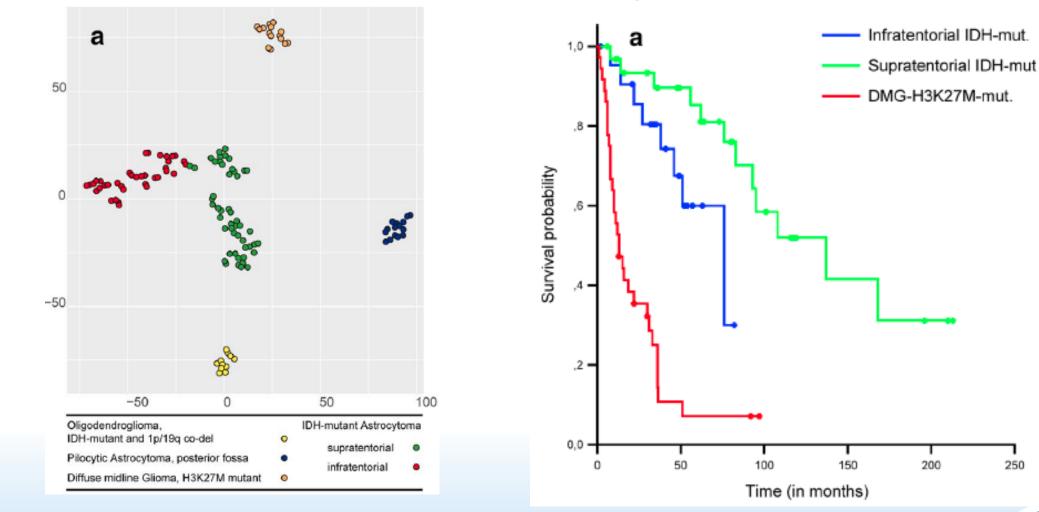
- Pediatric high-grade diffuse glioma
- Pediatric low-grade diffuse glioma
- "Circumscribed astrocytic gliomas"

CASE PRESENTATION: 4 year-old male with a history of intractable seizures and a left sided, non contrast-enhancing temporal lobe mass

FGFR2-CTNNA3 fusion on molecular testing



Infratentorial IDH-mutant astrocytoma


Infratentorial IDH-mutant astrocytoma is a distinct subtype

Acta Neuropath, 2020

Rouzbeh Banan¹ · Damian Stichel² · Anja Bleck¹ · Bujung Hong³ · Ulrich Lehmann⁴ · Abigail Suwala^{2,5} · Annekathrin Reinhardt^{2,5} · Daniel Schrimpf^{2,5} · Rolf Buslei⁶ · Christine Stadelmann⁷ · Karoline Ehlert⁸ · Marco Prinz⁹ · Till Acker¹⁰ · Jens Schittenhelm¹¹ · David Kaul¹² · Leonille Schweizer^{13,14} · David Capper^{13,14} · Patrick N. Harter^{15,16,17,18} · Nima Etminan¹⁹ · David T. W. Jones^{20,21,22} · Stefan M. Pfister^{20,21,23,24} · Christel Herold-Mende²⁵ · Wolfgang Wick^{20,26} · Felix Sahm^{2,5} · Andreas von Deimling^{2,5,20} · Christian Hartmann¹ · David E. Reuss^{2,5}

Infratentorial IDH-mutant astrocytoma

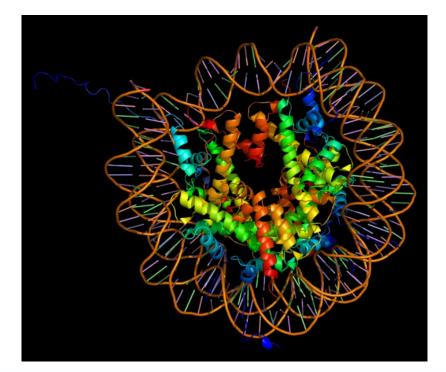
250

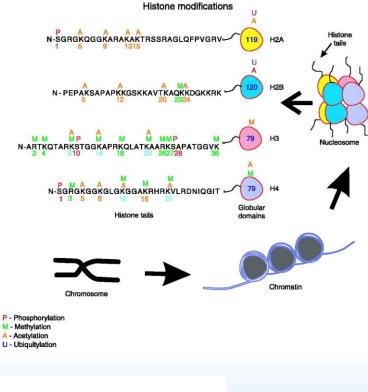
200

Banan R, et al., Acta Neuropath, 2020

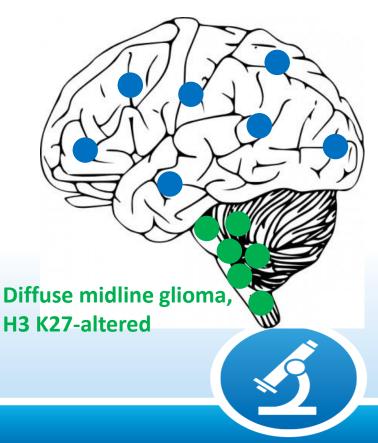
Core Histone Protein Mutations define Pediatric High-Grade Diffuse Gliomas

Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma

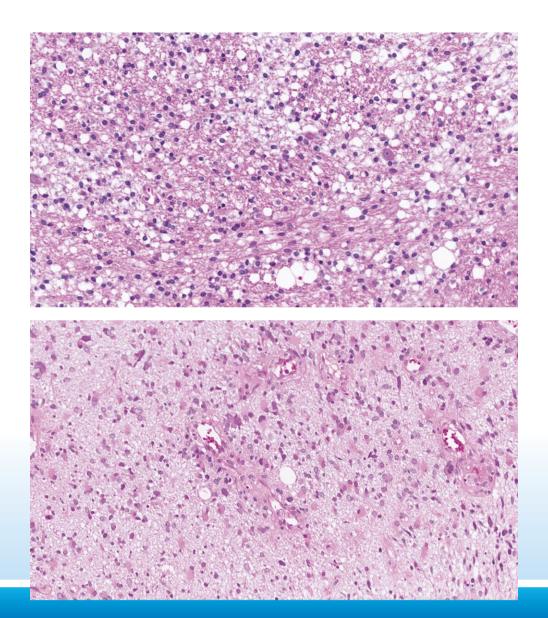

Jeremy Schwartzentruber^{1*}, Andrey Korshunov^{2*}, Xiao-Yang Liu^{3*}, David T. W. Jones⁴, Elke Pfaff⁴, Karine Jacob³, Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas glioblastomas

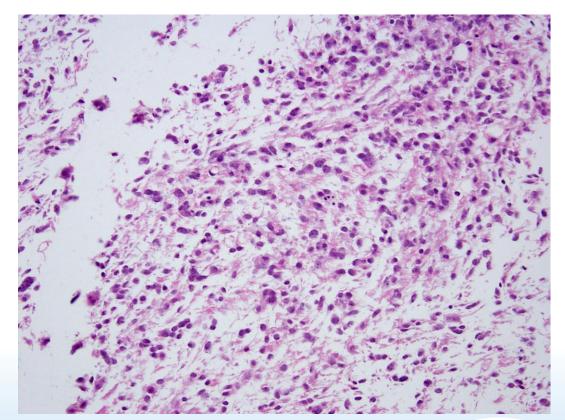

Gang Wu^{1,8}, Alberto Broniscer^{2,8}, Troy A McEachron^{3,8}, Charles Lu⁴, Barbara S Paugh³, Jared Becksfort⁵, Chunxu Qu⁵, Li Ding⁴, Robert Huether¹, Matthew Parker¹, Junyuan Zhang³, Amar Gajjar², Michael A Dyer³, Charles G Mullighan⁶, Richard J Gilbertson³, Elaine R Mardis⁴, Richard K Wilson⁴, James R Downing⁶, David W Ellison⁶, Jinghui Zhang¹ & Suzanne J Baker³ for the St. Jude Children's Research Hospital– Washington University Pediatric Cancer Genome Project⁷ Nat Genet, 2012

Nature, 2012



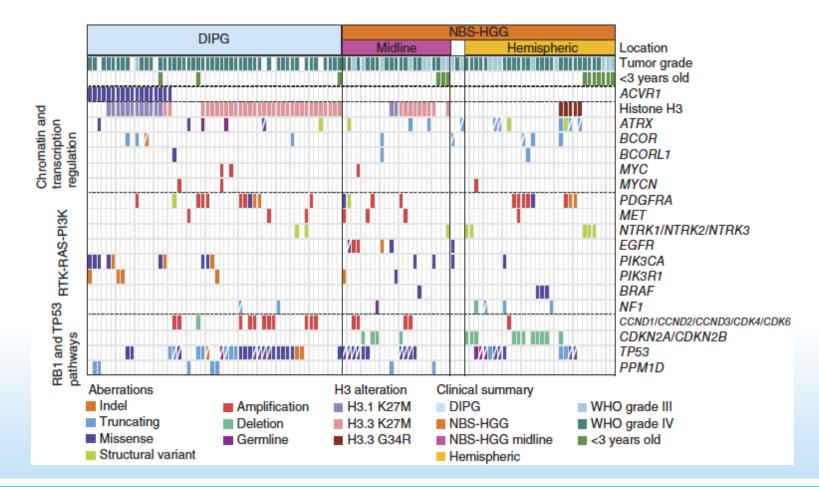
Core Histone Protein Mutations define Pediatric High-Grade Diffuse Gliomas


Diffuse hemispheric glioma, H3 G34-mutant



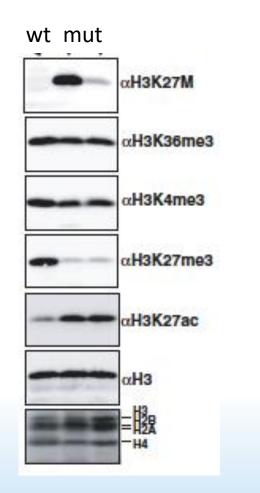
Schwartzentruber, J et. al., Nature, 2012

Diffuse midline glioma, H3K27-altered, CNS WHO grade 4

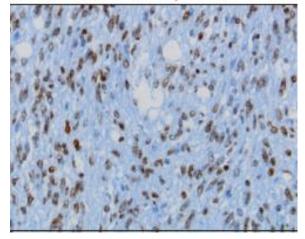


Can arise anywhere from the basal forebrain structures to the spinal cord

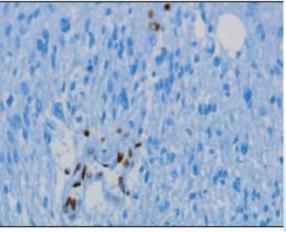
Diffuse midline glioma, H3K27-altered, CNS WHO grade 4


Wu G, et al., Nat Genet, 2014

Germline ACVR1 mutations cause Fibrodysplasia Ossificans Progressiva (FOP)



H3 K27M mutation impairs H3K27me3 genome-wide

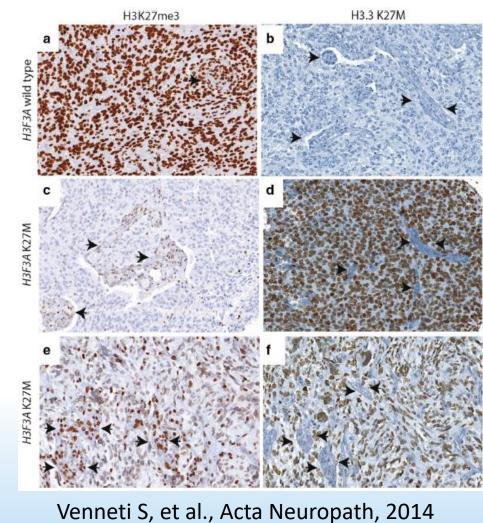


Lewis P, et al., Science, 2013

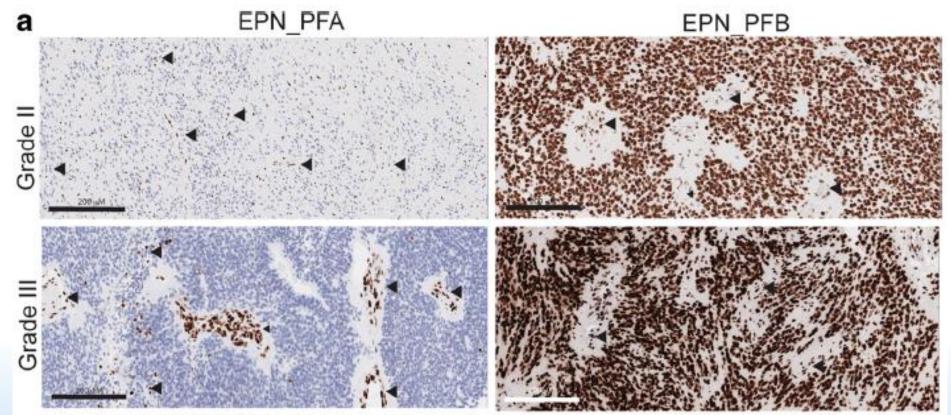
Human DIPG, H3 WT

Human DIPG, K27M H3F3A

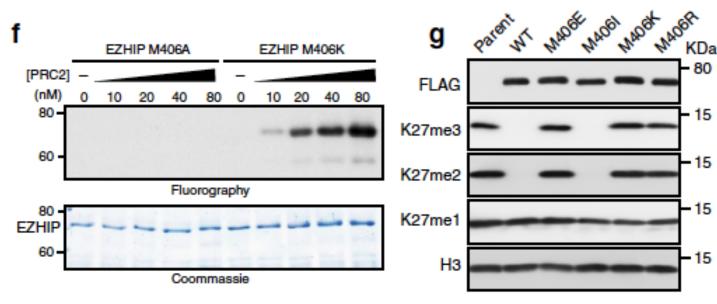
Diffuse midline glioma, H3 K27-altered, CNS WHO grade 4


K27I mutations have the same effect!

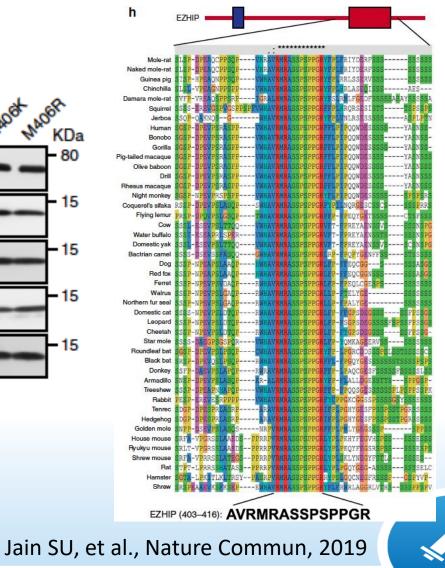
Presence of H3K27M or lack of H3K27me3 can be assessed immunohistochemically


Do not confuse H3K27M with H3K27me3!!!

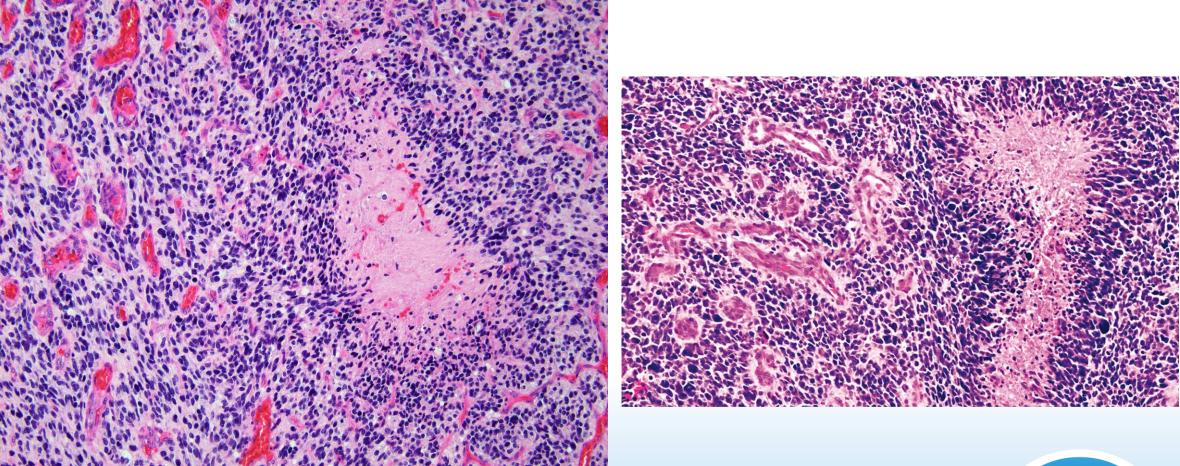
Similarly named biomarkers with diametrically opposing readouts.


Posterior fossa type A (PFA) ependymomas also show loss of H3K27me3

Panwalkar P, et al., Acta Neuropath 2017



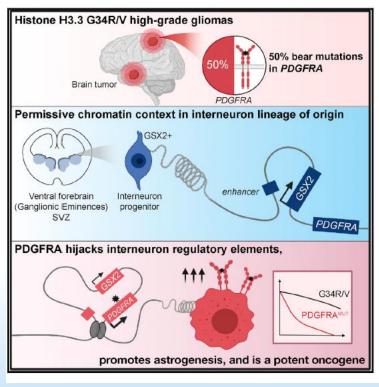
EZHIP overexpression mimics H3K27M mutation and is seen in both PFA ependymoma and DMG!!



Diffuse midline glioma, H3 K27-Altered, CNS WHO grade 4

H3 K27M mutation H3 K27I mutation EZHIP overexpression

Diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4



G34R/V mutant gliomas derive from distinct (neuronal) cells of origin and may modulate PDGFRA through abnormal epigenetic contacts

Histone H3.3G34-Mutant Interneuron Progenitors Co-opt *PDGFRA* for Gliomagenesis

Graphical Abstract

Cell. 2020

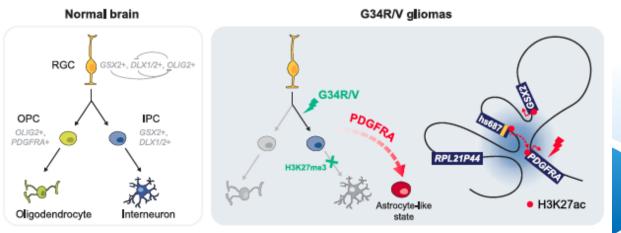
Authors

Carol C.L. Chen, Shriya Deshmukh, Selin Jessa, ..., Paolo Salomoni, Claudia L. Kleinman, Nada Jabado

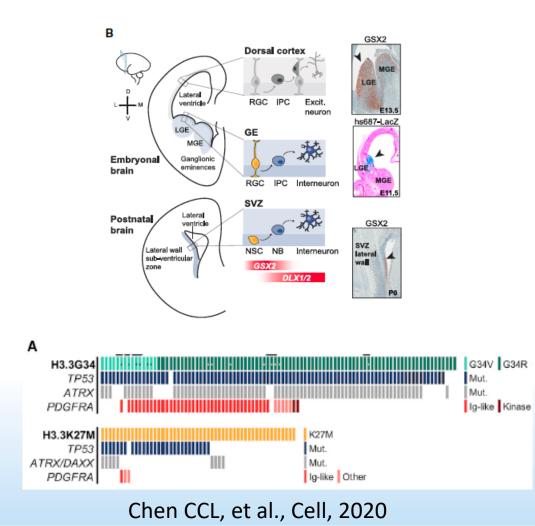
Correspondence

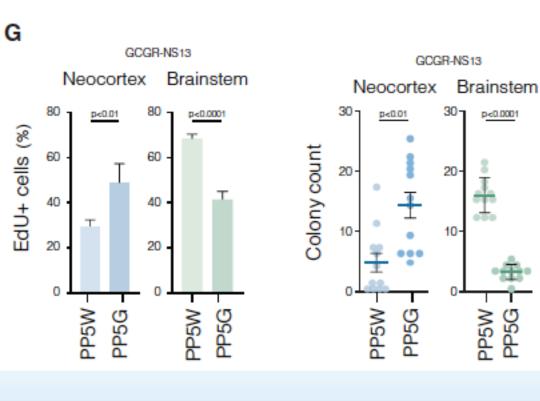
claudia.kleinman@mcgill.ca (C.L.K.), nada.jabado@mcgill.ca (N.J.)

In Brief


Lethal pediatric glioma arises from misregulation of interneuron differentiation.

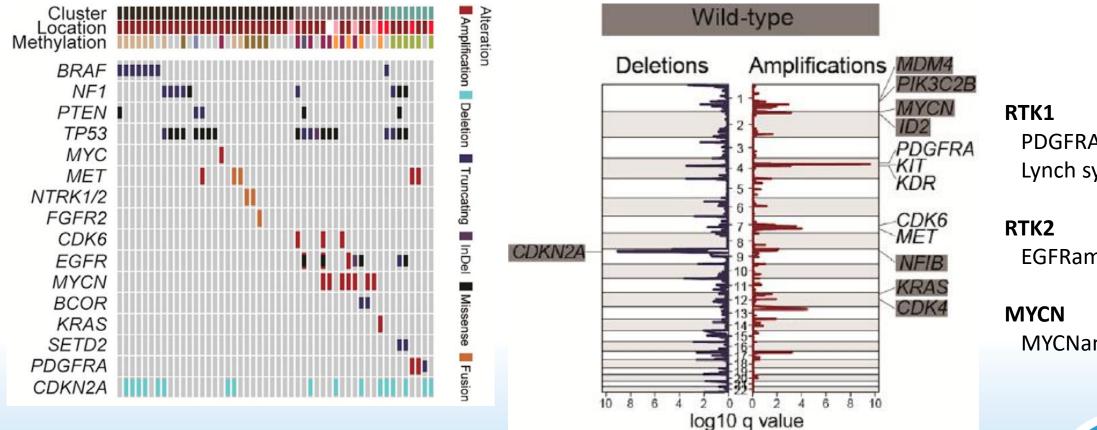
Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants


Raul Bardini Bressan,^{1,4} Benjamin Southgate,^{1,2} Kirsty M. Ferguson,^{1,2} Carla Blin,¹ Vivien Grant,¹ Neza Alfazema,^{1,2} Jimi C. Wills,² Maria Angeles Marques-Torrejon,¹ Gillian M. Morrison,^{1,2} James Ashmore,¹ Faye Robertson,^{1,2} Charles A.C. Williams,^{1,2} Leanne Bradley,^{1,2} Alex von Kriegsheim,² Richard A. Anderson,³ Simon R. Tomlinson,^{1,5} and Steven M. Pollard^{1,2,6,*}


Cell Stem Cell, 2021

Diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4

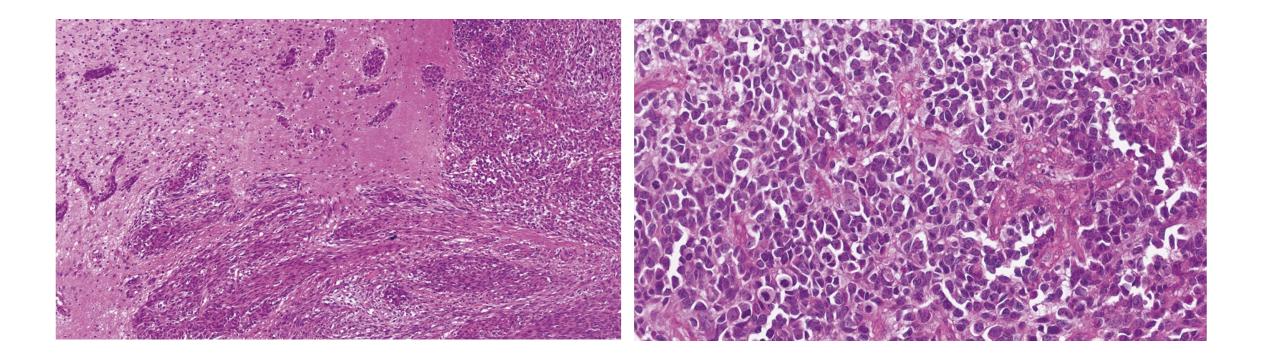
G34R/V mutant gliomas derive from distinct (neuronal) cells of origin and may modulate PDGFRA through abnormal epigenetic contacts



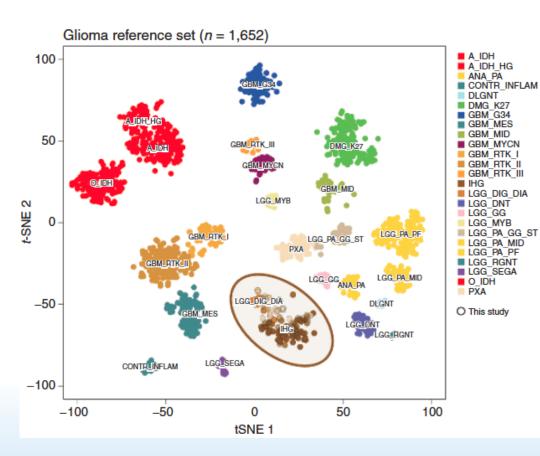
Bressan RB, et al., Cancer Cell, 2021

Diffuse pediatric-type HGG, H3-wildtype and IDH-wildtype, CNS WHO Grade 4

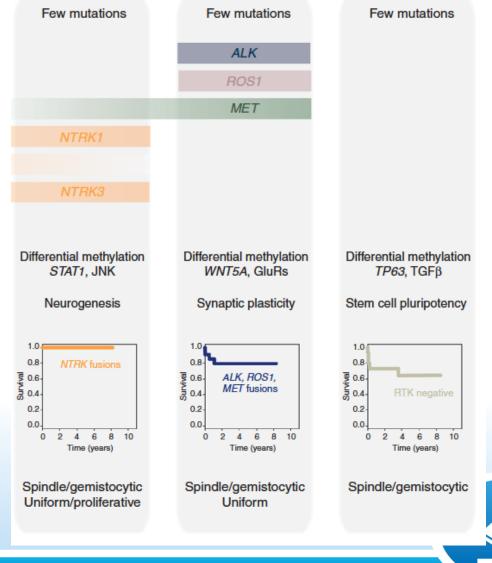
PDGFRAamp Lynch syndrome


EGFRamp/TERT mut

MYCNamp

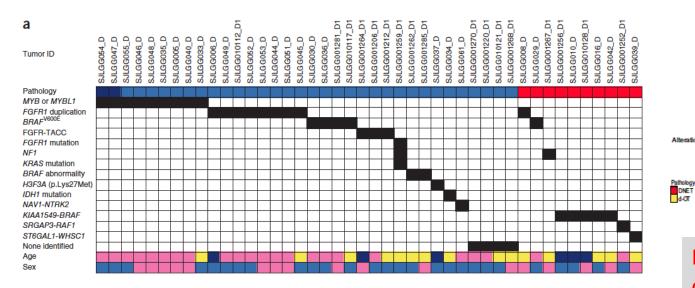

Mackay A, et al., Cancer Cell, 2017

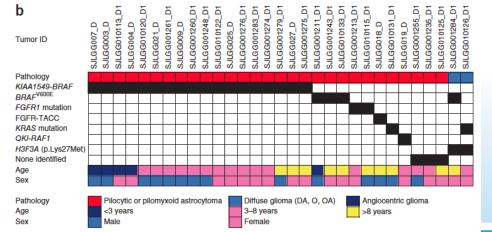
Biphasic growth pattern of pediatric HGG, MYCN-subtype

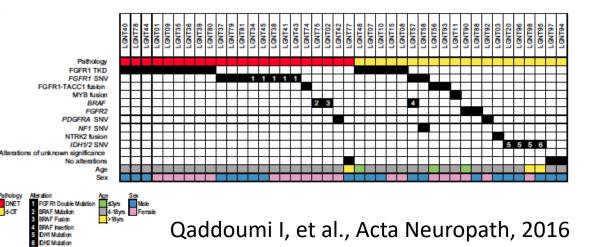


Infant-type hemispheric glioma

Clarke M, et al., Cancer Discovery, 2020

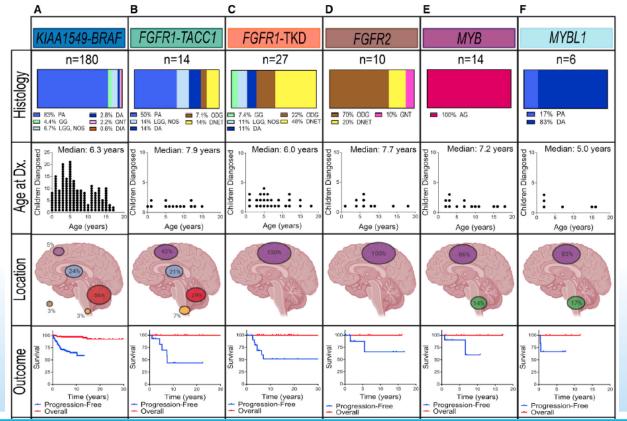

Pediatric-type diffuse low-grade glioma


- Variable histopathology (astrocytic, oligodendroglial, angiocentric)
- Overlapping palettes of molecular alterations, generally mobilizing MAP kinase signaling
- Extended survival of patients contrasts sharply with diffuse gliomas of adults
- Classification is very much a work in progress and limited by the rarity of the tumors in question



Pediatric-type diffuse low-grade glioma

а

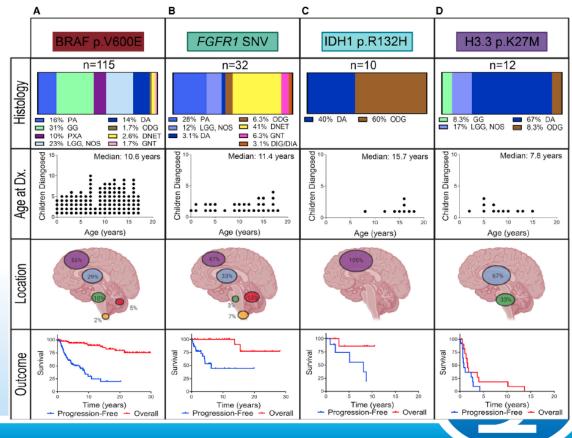

Recurrent involvement of a relatively narrow group of molecular alterations across histopath patterns

FGFR1 duplications FGFR1 point mutations FGFR1 fusions FGFR2 abnormalities BRAF V600E mutations MYB and MYBL1 alterations

Frequent mobilization of MAP Kinase signaling

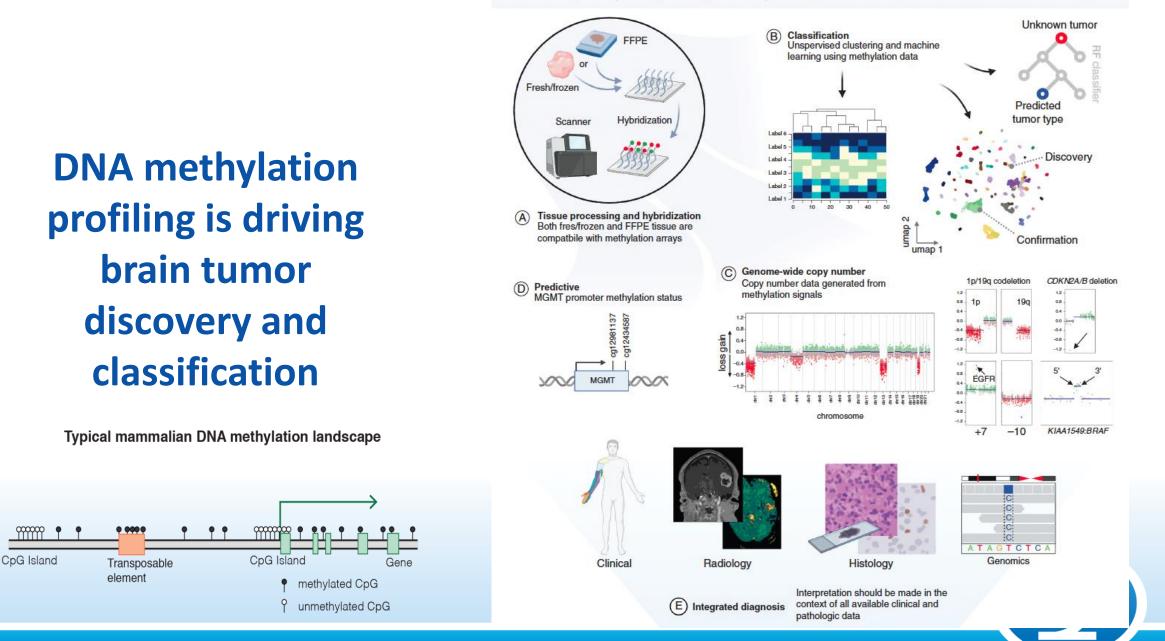
Zhang J, et al., Nat Genet, 2013

Pediatric-type diffuse lowgrade glioma

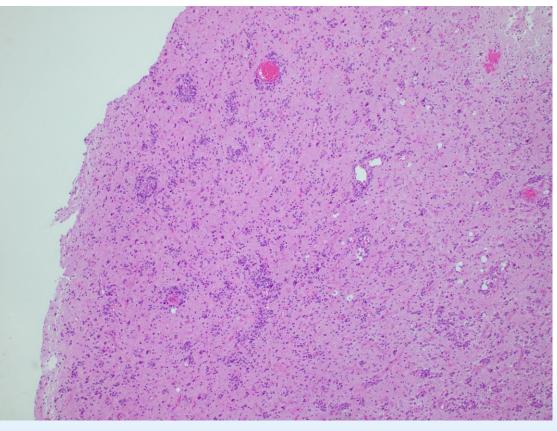


Cancer Cell Cancer Cell, 2020

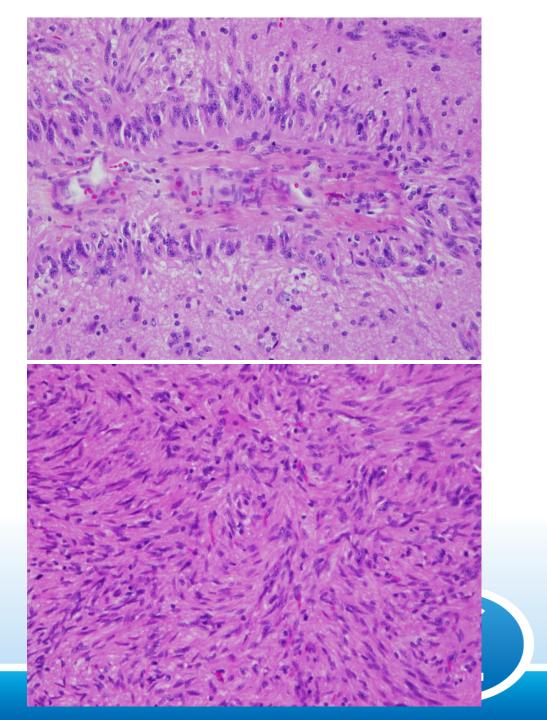
Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas

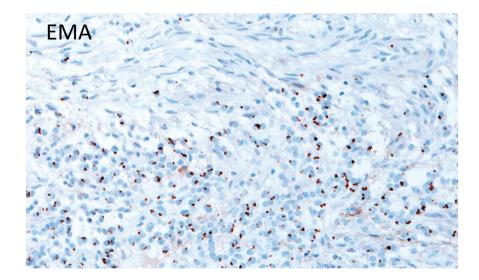

Authors

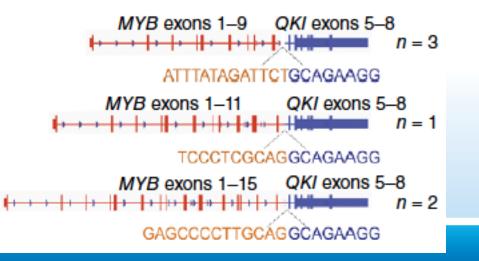
Scott Ryall, Michal Zapotocky, Kohei Fukuoka, ..., David W. Ellison, Uri Tabori, Cynthia Hawkins



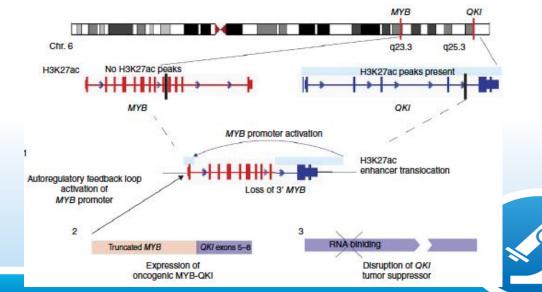
DNA methylation profiling in surgical neuropathology

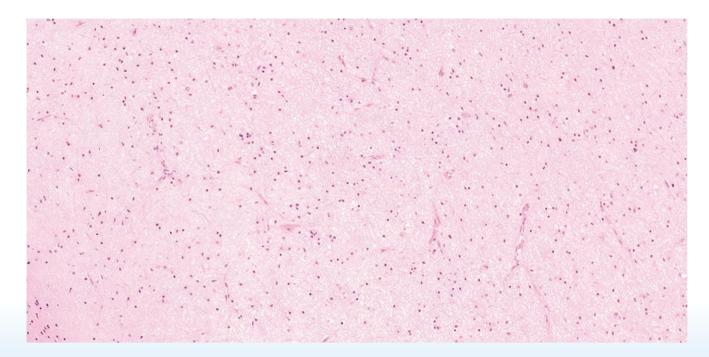

Pratt D, et al., Neuro-oncol, 2021


Angiocentric glioma, CNS WHO grade 1



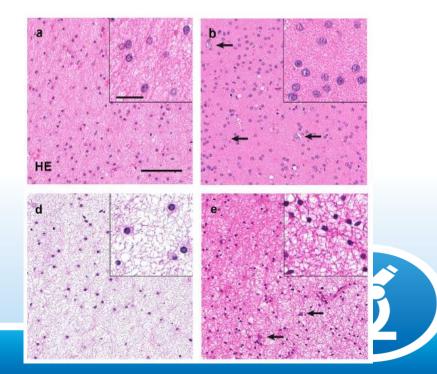
Supratentorial localization Patients with intractable seizures Unique DNA methylation signature


Angiocentric glioma, CNS WHO grade 1

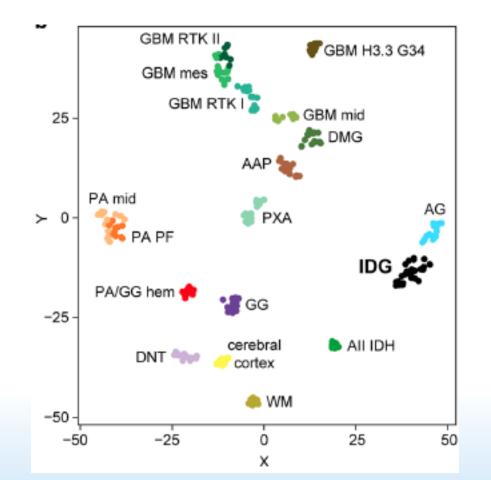


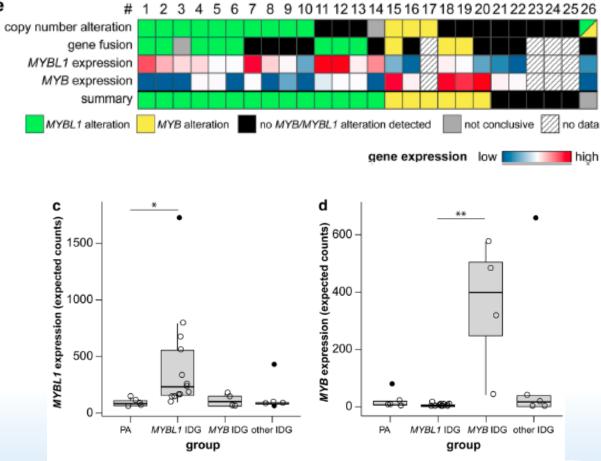
MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism Nat Genet, 2015

Pratiti Bandopadhayay^{1–4,50}, Lori A Ramkissoon^{5,50}, Payal Jain^{6–8,50}, Guillaume Bergthold^{1,9,50}, Jeremiah Wala^{1,3,4}, Rhamy Zeid^{4,5}, Steven E Schumacher^{1,3}, Laura Urbanski¹, Ryan O'Rourke^{1,3}, William J Gibson^{1,3,4}, Kristine Pelton⁵, Shakti H Ramkissoon^{5,10–12}, Harry J Han^{6,7}, Yuankun Zhu^{6,7}, Namrata Choudhari^{6,7}, Amanda Silva^{5–7}, Katie Boucher^{6,7} Rosemary E Henn^{6,7}, Yun Jee Kang⁵, David Knoff⁵, Brenton R Paolella^{1,3,4}, Adrianne Gladden-Young¹³, Pascale Varlet¹⁴, Melanie Pages¹⁴, Peleg M Horowitz^{1,15}, Alexander Federation^{4,5}, Hayley Malkin², Adam A Tracy³, Sara Seepo³, Matthew Ducar^{10,16}, Paul Van Hummelen¹⁶, Mariarita Santi^{17,18}, Anna Maria Buccoliero¹⁹, Mirko Scagnet²⁰, Daniel C Bowers²¹, Caterina Giannin²², Stephanie Puget²³, Cynthia Hawkins²⁴, Uri Tabori²⁵, Almos Klekner²⁶, Laszlo Bognar²⁶, Peter C Burger²⁷, Charles Eberhart²⁷, Fausto J Rodriguez²⁷, D Ashley Hill^{28–30}, Sabine Mueller^{31–33}, Daphne A Haas-Kogan^{32,34,35}, Joanna J Phillips^{32,36}, Sandro Santagata^{1,10–12}, Charles D Stiles¹, James E Bradner^{3,5,37}, Nada Jabado^{38–40}, Alon Goren¹³, Jacques Grill⁹, Azra H Ligon⁴¹, Liliana Goumnerova^{2,42,43}, Angela J Waanders^{44–46,48}, Phillip B Storm^{6,7,45,48}, Mark W Kieran^{2,4}, Keith L Ligon^{3,5,10–12,51}, Rameen Beroukhim^{1,3,5,37,49,51}

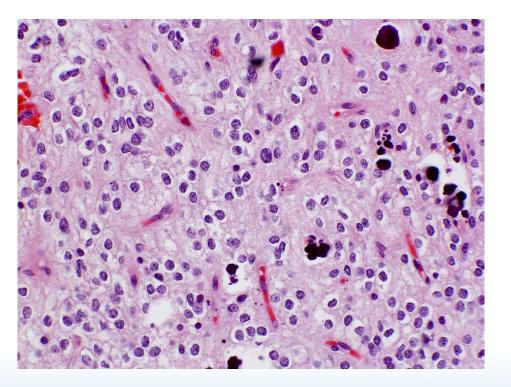


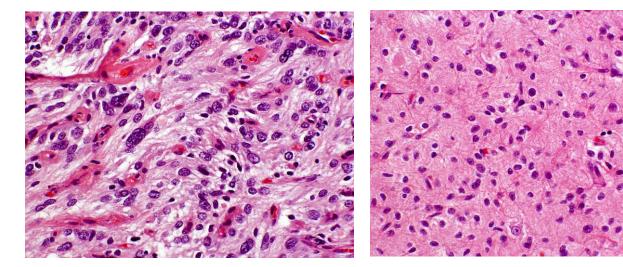
Diffuse astrocytoma, MYB- or MYBL1-altered, CNS WHO grade 1

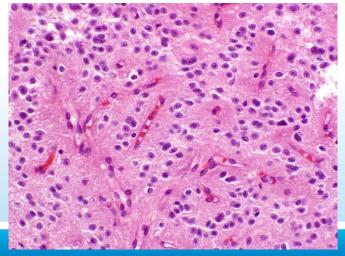

Supratentorial localization Patients with intractable seizures Unique DNA methylation signature Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of *MYBL1* or *MYB* and a benign disease course Acta Neuropath, 2019


Annika K. Wefers^{1,2,3} - Damian Stichel^{1,2} · Daniel Schrimpf^{1,2} · Roland Coras⁴ · Mélanie Pages⁵ · Arnault Tauziède-Espariat⁵ · Pascale Varlet⁵ · Daniel Schwarz^{6,7} · Figen Söylemezoglu⁸ · Ute Pohl^{9,10} · José Pimentel^{11,12} · Jochen Meyer^{1,2} · Ekkehard Hewer¹³ · Anna Japp¹⁴ · Abhijit Joshi¹⁵ · David E. Reuss^{1,2} · Annekathrin Reinhardt^{1,2} · Philipp Sievers^{1,2} · M. Belén Casalini^{1,2} · Azadeh Ebrahimi^{1,2} · Kristin Huang^{1,2} · Christian Koelsche^{1,16} · Hu Liang Low¹⁷ · Olinda Rebelo¹⁸ · Dina Marnoto¹⁸ · Albert J. Becker¹⁴ · Ori Staszewski¹⁹ · Michel Mittelbronn^{20,21,22,23,24} · Martin Hasselblatt²⁵ · Jens Schittenhelm^{26,27} · Edmund Cheesman²⁸ · Ricardo Santos de Oliveira²⁹ · Rosane Gomes P. Queiroz³⁰ · Elvis Terci Valera³⁰ · Volkmar H. Hans^{31,32} · Andrey Korshunov^{1,2} · Adriana Olar^{33,34} · Keith L. Ligon³⁵ · Stefan M. Pfister^{3,36,37} · Zane Jaunmuktane^{38,39} · Sebastian Brandner^{39,40} · Ruth G. Tatevossian⁴¹ · David W. Ellison⁴¹ · Thomas S. Jacques⁴² · Mrinalini Honavar⁴³ · Eleonora Aronica⁴⁴ · Maria Thom³⁸ · Felix Sahm^{1,2,3} · Andreas von Deimling^{1,2} · David T. W. Jones^{3,45} · Ingmar Blumcke⁴ · David Capper^{46,47}

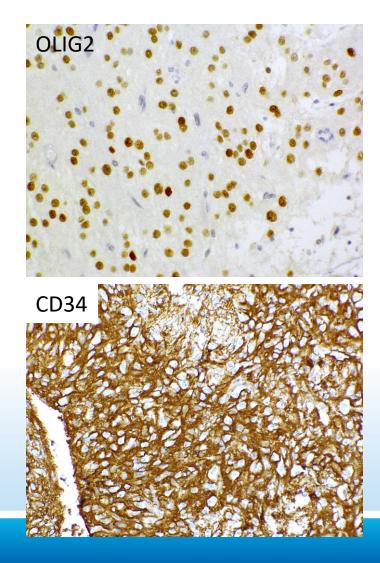
Diffuse astrocytoma, MYB- or MYBL1-altered, CNS WHO grade 1


е

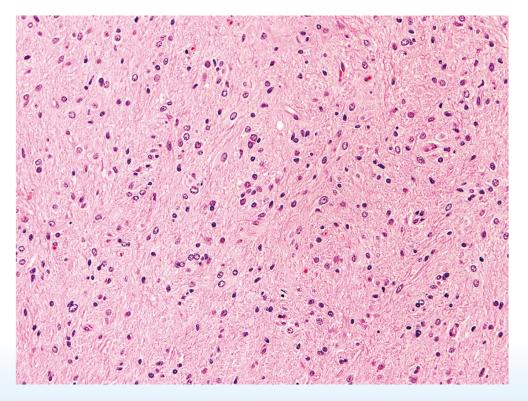



Wefers AK, Acta Neuropath, 2019

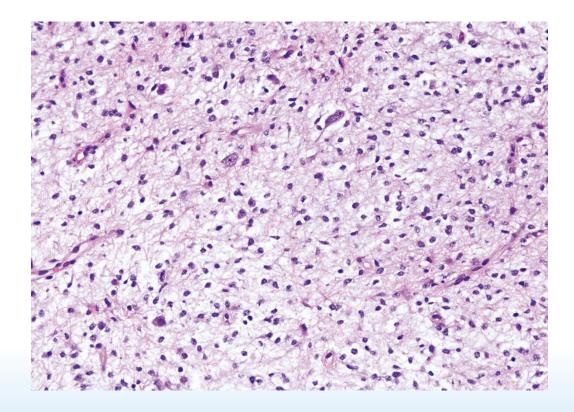
Polymorphous low-grade neuroepithelial tumor of the young (PLNTY), CNS WHO grade 1


Supratentorial localization Patients with intractable seizures Unique DNA methylation signature

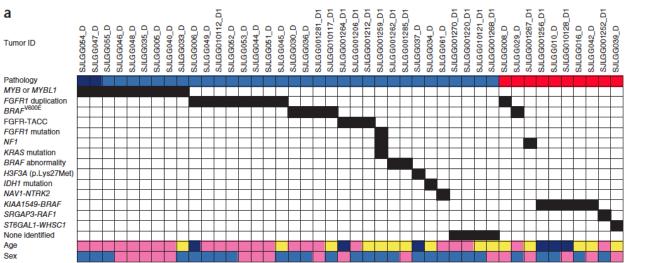


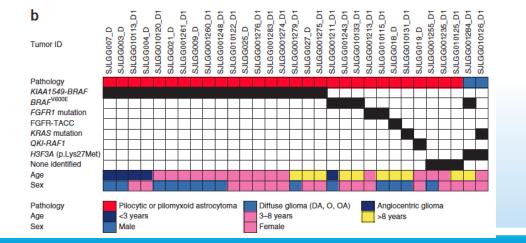


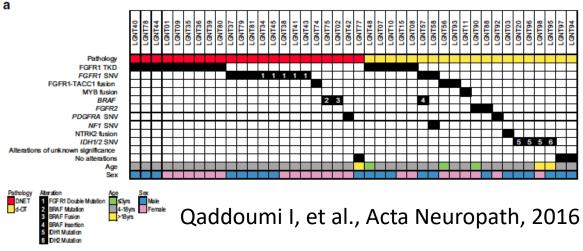
Polymorphous low-grade neuroepithelial tumor of the young (PLNTY), CNS WHO grade 1



Diffuse low-grade glioma, MAPK pathway-altered




Broader localization pattern throughout the neuraxis No unifying DNA methylation cluster Common, but not invariable association with epilepsy



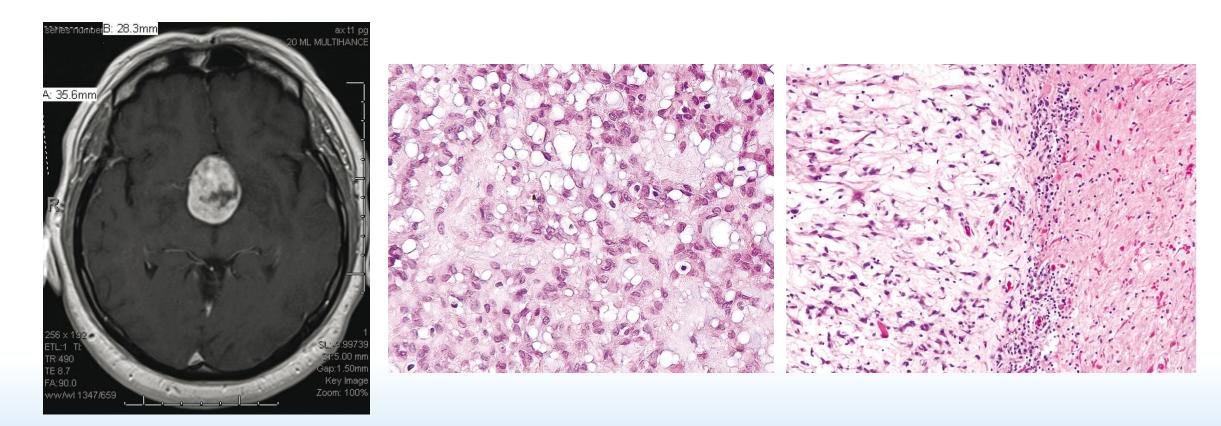
Diffuse low-grade glioma, MAPK pathway-altered

- IDH and H3 wildtype and no CDKN2A loss
- Indolent behavior is the rule, but no formal WHO grading as of yet, likely due to heterogeneity of this subclass

Zhang J, et al., Nat Genet, 2013

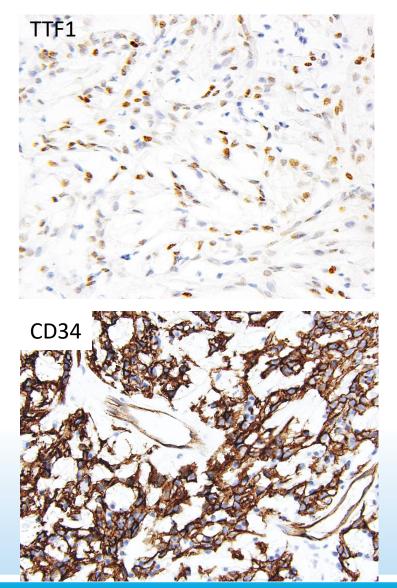
Circumscribed Astrocytic Gliomas (WHO 2021)

- Pilocytic astrocytoma
- High-grade astrocytoma with piloid features
- Pleomorphic xanthoastrocytoma (PXA)
- Subependymal giant cell astrocytoma
- Chordoid glioma
- Astroblastoma, MN1-altered

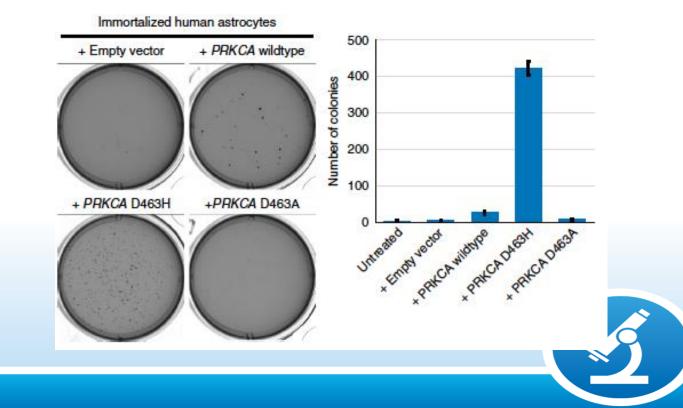


Circumscribed Astrocytic Gliomas (WHO 2021)

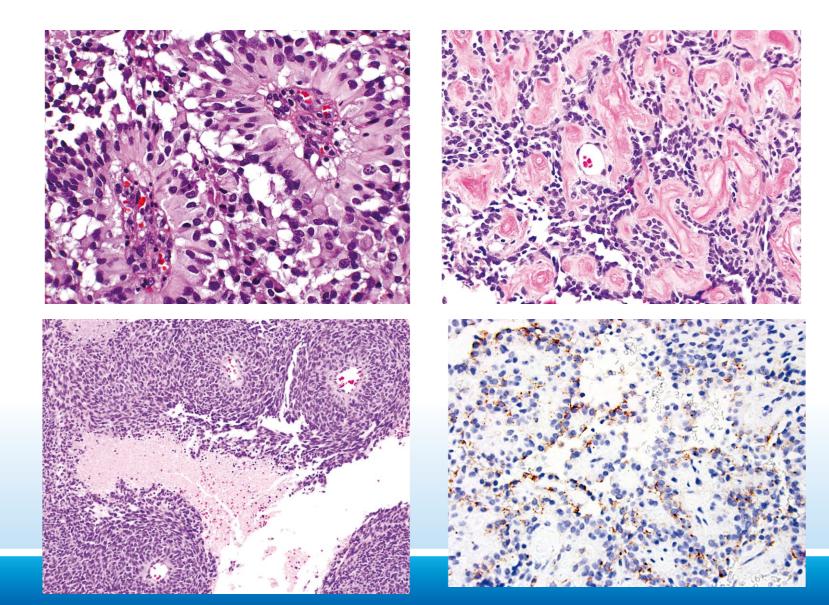
- Pilocytic astrocytoma
- High-grade astrocytoma with piloid features
- Pleomorphic xanthoastrocytoma (PXA)
- Subependymal giant cell astrocytoma
- Chordoid glioma
- Astroblastoma, MN1-altered


Chordoid glioma, CNS WHO grade 2

Arise with symptoms of obstructive hydrocephalus and/or compression of hypothalamus/optic chiasm Thought to arise from specialized tanycytic ependymal cells of the organum vasculosum of the lamina terminalis



Chordoid glioma, CNS WHO grade 2

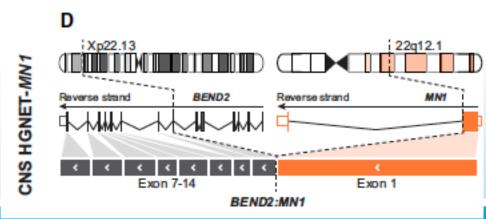


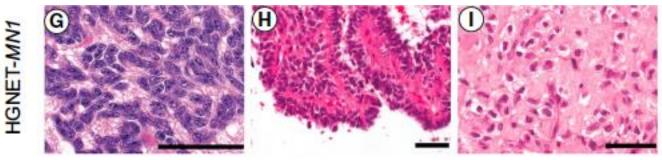
A recurrent kinase domain mutation in *PRKCA* defines chordoid glioma of the third ventricle

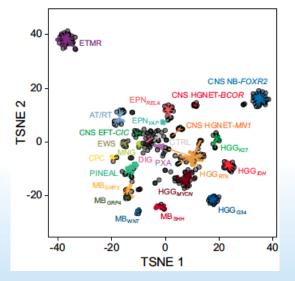
Nat Commun, 2018 Benjamin Goode¹, Gourish Mondal¹, Michael Hyun¹, Diego Garrido Ruiz ², Yu-Hsiu Lin³, Jessica Van Ziffle^{1,4}, Nancy M. Joseph^{1,4}, Courtney Onodera⁴, Eric Talevich⁴, James P. Grenert^{1,4}, Iman H. Hewedi⁵, Matija Snuderl⁶, Daniel J. Brat⁷, Bette K. Kleinschmidt-DeMasters⁸, Fausto J. Rodriguez ⁹, David N. Louis¹⁰, William H. Yong¹¹, M. Beatriz Lopes¹², Marc K. Rosenblum¹³, Nicholas Butowski¹⁴, Tarik Tihan¹, Andrew W. Bollen¹, Joanna J. Phillips^{1,14}, Arun P. Wiita ^{2,3}, Iwei Yeh^{1,4}, Matthew P. Jacobson², Boris C. Bastian^{1,4}, Arie Perry ^{1,14} & David A. Solomon ^{1,4}

Astroblastoma, MN-1 altered

- Architectural pattern extends across diagnostic entities
- Variable presence of high-grade features
- Female predominance
- Most are


supratentorial


Identification as a unique constituent within supratentorial PNET


CNS

New Brain Tumor Entities Emerge Cell, 2016 from Molecular Classification of CNS-PNETs

Dominik Sturm,^{1,2,3,89} Brent A. Orr,^{4,89} Umut H. Toprak.^{2,5,89} Volker Hovestadt,^{2,6,89} David T.W. Jones,^{1,2} David Capper.^{2,7,8} Martin Sill.^{2,9} Ivo Buchhalter.^{2,5} Paul A. Northcott.^{1,2} Irina Leis.⁷ Marina Ryzhova.¹⁰ Christian Koelsche, 2,7,8 Elke Pfaff, 1,2,3 Sariah J. Allen, 4 Gnanaprakash Balasubramanian, 2,11 Barbara C. Worst, 1,2,3 Kristian W. Paitler,^{1,2} Sebastian Brabetz,^{1,2} Pascal D. Johann,^{1,2,3} Felix Sahm,^{2,7,8} Jüri Reimand,^{12,13} Alan Mackay,¹⁴ Diana M. Carvalho,¹⁴ Marc Remke,¹⁵ Joanna J. Phillips,^{16,17,18} Arie Perry,^{16,17,18} Cynthia Cowdrey,¹⁶ Rachid Drissi,¹⁶ Maryam Fouladi,¹⁹ Felice Giangaspero,^{20,21} Maria Łastowska,²² Wiesława Grajkowska,²² Wolfram Scheurlen,²³ Torsten Pietsch.²⁴ Christian Hagel.²⁵ Johannes Gojo.^{26,27} Daniela Lötsch.²⁷ Walter Berger.²⁷ Irene Slavc.²⁶ Christine Haberler,²⁸ Anne Jouvet,^{29,30} Stefan Holm,³¹ Silvia Hofer,³² Marco Prinz,^{33,34} Catherine Keohane,³⁵ Iris Fried,³⁶ Christian Mawrin,³⁷ David Scheie,³⁸ Bret C. Mobley,³⁹ Matthew J. Schniederjan,⁴⁰ Mariarita Santi,⁴¹ Anna M. Buccoliero,⁴² Sonika Dahiya.⁴³ Christof M. Kramm.⁴⁴ André O. von Bueren.⁴⁴ Katja von Hoff.⁴⁵ Stefan Rutkowski.⁴⁵ Christel Herold-Mende,⁴⁶ Michael C. Frühwald,⁴⁷ Till Milde,^{2,3,48} Martin Hasselblatt,⁴⁹ Pieter Wesseling,^{50,51} Jochen Rößler,⁵² Ulrich Schüller,^{53,54} Martin Ebinger,^{55,71} Jens Schittenhelm,^{56,71} Stephan Frank,⁵⁷ Rainer Grobholz.⁵⁸ Istvan Vajtai, 59 Volkmar Hans, 60 Reinhard Schneppenheim, 45 Karel Zitterbart, 61 V. Peter Collins, 62 Eleonora Aronica, 63 Pascale Varlet, 64 Stephanie Puget, 65 Christelle Dufour, 66 Jacques Grill, 66 Dominique Figarella-Branger, 67 Marietta Wolter, ^{68,69} Martin U. Schuhmann,^{70,71} Tarek Shalaby,⁷² Michael Grotzer,⁷² Timothy van Meter,⁷³ Camelia-Maria Monoranu,^{74,75} Jörg Felsberg,^{68,69} Guido Reifenberger,^{68,69} Matija Snuderl,⁷⁶ Lynn Ann Forrester,⁷⁷ Jan Koster,⁷⁸ Rogier Versteeg,⁷⁸ Richard Volckmann,⁷⁸ Peter van Sluis.⁷⁸ Stephan Wolf.^{2,79} Tom Mikkelsen.⁸⁰ Amar Gajjar,⁸¹ Kenneth Aldape,⁸² Andrew S. Moore,^{83,84} Michael D. Taylor,¹⁵ Chris Jones,¹⁴ Nada Jabado,⁸⁵ Matthias A. Karajannis,⁸⁶ Roland Eils,^{2,5,87,88} Matthias Schlesner,^{2,5} Peter Lichter,^{2,6,88} Andreas von Deimling,^{2,7,8} Stefan M. Pfister, 1,2,3 David W. Ellison, 4,90 Andrey Korshunov, 2,7,8,90 and Marcel Kool1,2,90,*

MN1 alterations define a clinically distinct tumor subgroup with astroblastomatous histopathology

Multimodal molecular analysis of astroblastoma enables reclassification of most cases into more specific molecular

entities Brain Pathol, 2018

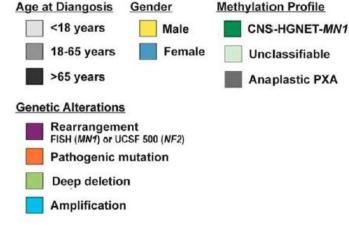
Matthew D. Wood ^[D]; Tarik Tihan¹; Arie Perry^{1,2}; Geeta Chacko³; Clinton Turner⁴; Cunfeng Pu⁵; Christopher Payne⁶; Alexander Yu⁶; Serguei I. Bannykh⁷; David A. Solomon ^[D]

¹ Department of Pathology, Division of Neuropathology, ² Department of Neurological Surgery, University of California, San Francisco, CA.

A ANIA FICILI

³ Department of Pathology, Division of Neuropathology, Christian Medical College, Vellore, Tamil Nadu, India.

⁴ Anatomical Pathology, LabPLUS Auckland City Hospital, Auckland, New Zealand.

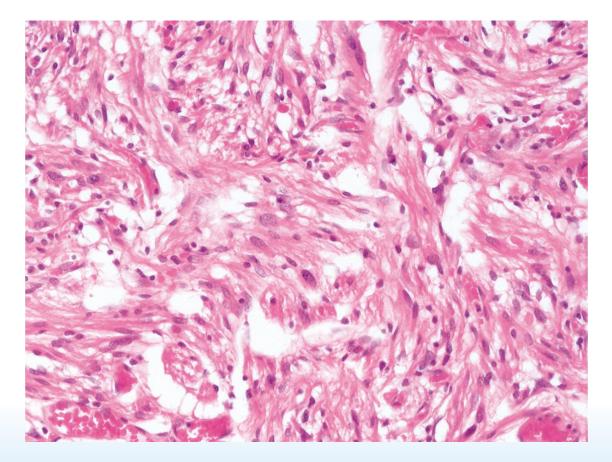

0

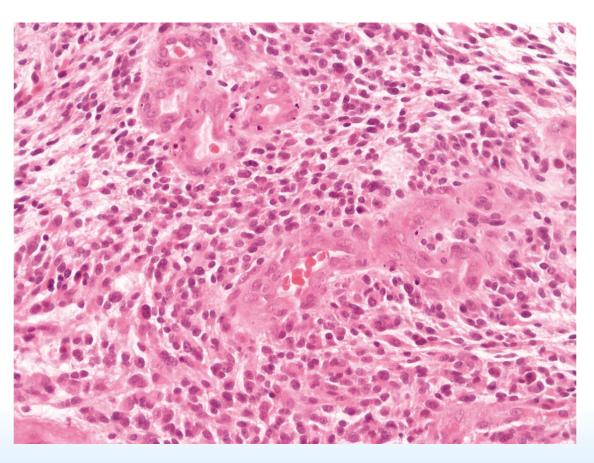
0

⁵ Department of Pathology, ⁶ Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA.

⁷ Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.

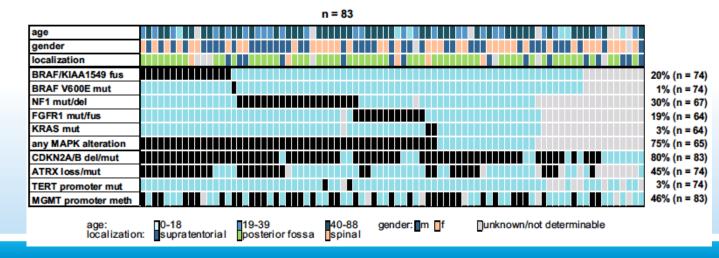
	Case 4	Case 3	Case 1	Case 8	Case 7	Case 5	Case 6	Case 2	A
Age at Diagnosis						Ì.			
Gender									
Methylation Profile									
MN1									G
TERT Promoter									-
TP53	2								
CDKN2A/B									
ATM									
NF2									
BRAF p.V600E									
CDK4	í								
NRAS									
PTEN									
Chromosome 7									M
Chromosome 10									
Chromosome 13									
Chromosome 22									


Most Frequent Chromosomal Gains and Losses



Case	Category	UCSF 500 pathogenic alterations	MINT FISH	DINA methylation profiling	
1	MN1 breakapart	CDKN2A/B deep deletion, TERT promoter mutation	Breakapart	Unclassifiable	
2	Unclassifiable	TP53, PTEN mutations, numerous chromo- some losses	Intact, monosomy 22q	Unclassifiable	
3	MN1 breakapart	None identified	Breakapart	CNS-HGNET-MN1	
4	MN1 breakapart	None identified	Breakapart	CNS-HGNET-MN1	
5	High-grade astrocytoma	TP53, NRAS, TERT promoter mutations, CDK4 amplification, chromosome 7 gain/ chromosome 10 loss	Intact	Unclassifiable	
6	Unclassifiable	TP53 mutation, numerous chromosome losses	Intact, polysomy 22q	Unclassifiable	
7	High-grade astrocytoma	BRAF p.V600E, CDKN2A/B deep deletion, TERT promoter mutation	Intact, monosomy 22q	Anaplastic PXA	
8	MN1 breakapart	ATM mutation, NF2 structural rearrangement	Breakapart	CNS-HGNET-MN1	

High-grade astrocytoma with piloid features

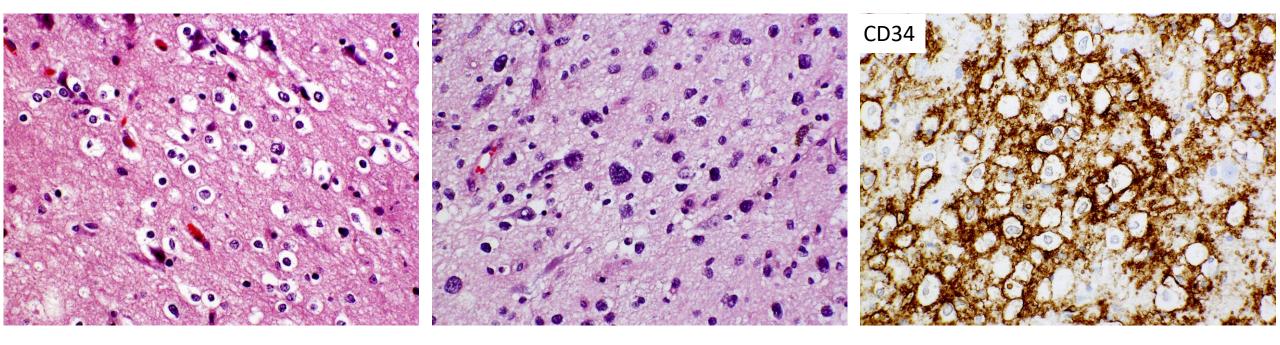

Predilection for posterior fossa, but can arise across the CNS Median age of 40 (older than standard pilocytic astrocytomas) Most arise de novo



High-grade astrocytoma with piloid features

Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations Acta Neuropath, 2018

Annekathrin Reinhardt^{1,2} · Damian Stichel^{1,2} · Daniel Schrimpf^{1,2} · Felix Sahm^{1,2} · Andrey Korshunov^{1,2} · David E. Reuss^{1,2} · Christian Koelsche^{1,2} · Kristin Huang^{1,2} · Annika K. Wefers^{1,2} · Volker Hovestadt^{3,4} · Martin Sill^{4,48} · Dorothee Gramatzki²⁹ · Joerg Felsberg⁹ · Guido Reifenberger^{9,30} · Arend Koch⁷ · Ulrich-W. Thomale³⁵ · Albert Becker⁸ · Volkmar H. Hans¹⁰ · Marco Prinz^{11,47} · Ori Staszewski¹¹ · Till Acker¹² · Hildegard Dohmen¹² · Christian Hartmann¹³ · Wolf Mueller¹⁴ · Muin S. A. Tuffaha³⁶ · Werner Paulus¹⁵ · Katharina Heß¹⁵ · Benjamin Brokinkel¹⁵ · Jens Schittenhelm¹⁶ · Camelia-Maria Monoranu¹⁷ · Almuth Friederike Kessler³⁷ · Mario Loehr³⁷ · Rolf Buslei^{18,19} · Martina Deckert²⁰ · Christian Mawrin²¹ · Patricia Kohlhof²² · Ekkehard Hewer²³ · Adriana Olar^{24,25,26} · Fausto J. Rodriguez²⁷ · Caterina Giannini²⁸ · Amulya A. NageswaraRao²⁸ · Uri Tabori^{38,39,40,41} . Nuno Miguel Nunes^{40,41} · Michael Weller²⁹ · Ute Pohl³¹ · Zane Jaunmuktane³² · Sebastian Brandner³² · Andreas Unterberg⁴² · Daniel Hänggi⁴³ · Michael Platten^{44,45} · Stefan M. Pfister^{4,5,6,48} · Wolfgang Wick^{33,4} · Christel Herold-Mende³⁴ · David T. W. Jones^{4,48,49} · Andreas von Deimling^{1,2,4} · David Capper^{1,2,46,50}



Summary

- IDH mutant astrocytomas can arise infratentorially
- Pediatric-type high-grade gliomas are defined by epigenetic abnormalities
- Pediatric-type low-grade gliomas feature MAP kinase pathway activation
- Pediatric-type low-grade glioma subclasses have emerged with the aid of integrated molecular profiling (including global DNA methylation analysis)
- Discrete molecular alterations characterize subsets of circumscribed astrocytic gliomas
- Unique DNA methylation signature defines HGAP

4 year-old male with a history of intractable seizures and a left sided, non contrast-enhancing temporal lobe mass

FGFR2-CTNNA3 fusion on molecular testing

PLNTY

THANKS!!

- Greg Fuller
- Leo Ballester

Q & A

