Functional Neuroanatomy of the Basal Ganglia

Dennis K. Burns, M.D. Professor Emeritus, Department of Pathology (Neuropathology) University of Texas Southwestern Medical Center

Disclosures

• I have no relevant financial relationships to disclose

Learning Objectives

- List the major components of the basal ganglia and identify:
 - The major receptive area of the basal ganglia, the major sources of input to the basal ganglia and the nature of these inputs (i.e., excitatory vs inhibitory)
 - The sources of basal ganglia efferent projections, the major targets of these projections and the nature of these projections (i.e., excitatory vs inhibitory)
 - The major afferent and efferent connections of individual basal ganglia nuclei
- Define the **direct and indirect basal ganglia pathways**, including
 - The individual nuclei involved in these pathways, the sequence in which these nuclei receive signals and the nature (i.e., excitatory vs inhibitory) of these signals
 - The **net effects** of activation of the direct and indirect pathways on cerebral cortical activity
- List the three major functional domains that are influenced by basal ganglia activity

Learning Objectives, continued

- Identify the neuroanatomical abnormalities that underlie the following basal ganglia disorders and the derangements in the direct and indirect basal ganglia pathways that account for the hyper- or hypokinesis encountered in each of these disorders
 - Hemiballism
 - Huntington disease
 - Parkinson disease

Functional Neuroanatomy of the Basal Ganglia Outline

- Overview of the components of the components of the basal ganglia, input to the basal ganglia, targets of basal ganglia projections and basal ganglia function(s)
- Review of individual basal ganglia nuclei and their connections
- The direct and indirect basal ganglia pathways
 - Functional domains influenced by basal ganglia pathways
- Abnormalities in basal ganglia circuitry associated with selected motor disorders
 - Hyperkinetic disorders
 - Hypokinetic disorders

Relative positions of basal ganglia nuclei

Southwestern Web Curriculum

Overview of basal ganglia circuitry

- Basal ganglia components
 - Striatum (caudate, putamen, ventral striatum)
 - Globus pallidus (internal and external segments) and ventral pallidum
 - Subthalamic nucleus
 - Substantia nigra pars compacta (SNc) and reticulata (SNr)

ansa lenticularis and fasciculus lenticularis

Overview of basal ganglia circuitry

- Basal ganglia components
 - Striatum (caudate, putamen, ventral striatum)
 - Globus pallidus (internal and external segments) and ventral pallidum
 - Subthalamic nucleus
 - Substantia nigra pars compacta (SNc) and reticulata (SNr)
- Basal ganglia afferents
 - Major sources = cerebral cortex and thalamus
 - Most afferent projections received by striatum

Most efferent projections from **globus pallidus (internal** segment/GPi) and SNr via

ansa lenticularis and fasciculus lenticularis

Overview of basal ganglia circuitry

- Basal ganglia components
 - Striatum (caudate, putamen, ventral striatum)
 - Globus pallidus (internal and external segments) and ventral pallidum
 - Subthalamic nucleus
 - Substantia nigra pars compacta (SNc) and reticulata (SNr)
- Basal ganglia afferents
 - Major sources = cerebral cortex and thalamus
 - Most afferent projections received by striatum
- Basal ganglia efferents
 - Major target = thalamus
 - Additional descending projections to pedunculopontine nucleus
 - Most efferent projections from globus pallidus (internal segment/GPi) and SNr via
 - ansa lenticularis and fasciculus lenticularis

From Horisawa S et al: *Epilepsia Open* 2020; 6:225-229

Overview of basal ganglia circuitry, continued

Overview of basal ganglia circuitry, continued

What do the basal ganglia do?

- Represent an important **feedback circuit** to cerebral cortical neurons
- Influence the activity of cerebral cortical neurons via **projections to the thalamus**
- Required for the normal planning, initiation and cessation of **voluntary movements**
- Influence domains beyond classical motor domains
 - Cognition
 - Limbic activities

Individual nuclei of the basal ganglia

Striatum

- Composed of caudate, putamen and ventral striatum/nucleus accumbens
- Composed of
 - Medium spiny GABAergic projection neurons (~85%)
 - Mixed population of cholinergic and GABAergic interneurons (~15%)
- Major **receptive area** of basal ganglia afferents from
 - Cerebral cortex (glutamatergic)
 - Thalamus (glutamatergic)
 - Substantia nigra and ventral tegmental area (dopaminergic)
- Efferent projections **remain within** basal ganglia (inhibitory)
 - Globus pallidus and ventral pallidum
 - Substantia nigra (SNc and SNr)

Striatum, continued

Medium spiny projection neurons

- Receive **input** from cerebral cortex, thalamus and pars compacta of substantia nigra (SNc)
- Two subtypes, based on dopamine receptor expression (D1 vs D2)
- **D1** neurons
 - **Excited** by dopamine
 - Co-express GABA and substance P
 - Project to internal segment of globus pallidus (GPi) and pars reticulata of substantia nigra (SNr)
- D2 neurons
 - **Inhibited** by dopamine
 - Co-express GABA and enkephalin
 - Project to external segment of globus pallidus (GPe)
- Projections (GABAergic) from both subtypes are inhibitory

From Taverna S et al. *J Neurosci* 2008; 28:5504-5512

Globus pallidus

- Composed of histologically identical (but functionally different) external and internal segments
- Populated by GABAergic projection neurons
- External segment (GPe)
 - Receives inhibitory input from D2 neurons in striatum
 - Sends inhibitory projections to subthalamic nucleus
 - Receives inhibitory input from D1 neurons in striatum and excitatory input from subthalamic nucleus
 - Sends inhibitory projections to thalamus

Globus pallidus

- Composed of histologically identical (but functionally different) external and internal segments
- Populated by GABAergic projection neurons
- External (lateral) segment (GPe)
 - Receives inhibitory input from D2 neurons in striatum
 - Sends inhibitory projections to subthalamic nucleus
- Internal (medial) segment (GPi)
 - Receives inhibitory input from D1 neurons in striatum and excitatory input from subthalamic nucleus
 - Sends most of its projections to thalamus

Subthalamic nucleus

- Populated by glutamatergic neurons
- Only **exclusively excitatory nucleus** in the basal ganglia
- Receives **input** from
 - **GPe** (inhibitory)
 - Cerebral cortex (excitatory)
- Sends excitatory projections to
 - GPi
 - SNr
- A component of the **"indirect" basal ganglia loops**

Substantia nigra

- Two subdivisions
 - Pars compacta (SNc)
 - Pars reticulata (SNr)
- SNc populated exclusively by dopaminergic cells
 - Most input comes from striatum
 - Reciprocal output to striatum
 - Dopaminergic projections modulate the activity of striatal projection neurons (excitation of D1 neurons and inhibition of D2 neurons)
- For simplification, we can think of the SNr as identical to the GPi in terms of neurotransmitters (GABA) and connections

The direct and indirect basal ganglia "loops"

- Pathways for flow of information through the basal ganglia
- **Reciprocal** effects on the **thalamus**
- Pathways work together to modulate the excitatory influence of the thalamus on the cerebral cortex
 - Thalamocortical projections influence cortical regions in addition to traditional motor areas
- Recent evidence indicates that these pathways are actually interconnected at multiple levels

The direct basal ganglia pathway

- Major pathway for releasing the thalamus from the tonic inhibitory effects of the basal ganglia ("disinhibition")
- Begins with excitation of an intermittently active (inhibitory) D1 neuron in the neostriatum
- **D1** (GABA-ergic) **neurons** in neostriatum project directly to **internal segment of globus pallidus (GPi)**, where they inhibit local neurons
- Tonic inhibitory influence of GPm on thalamus is therefore decreased ("disinhibition"), and excitatory thalamic signals to cerebral cortex increase

Indirect basal ganglia pathway

- Antagonizes activity of the direct pathway
- Projections include signals from D2 neurons in the neostriatum that go through lateral segment of globus pallidus and subthalamic nucleus
- Effect is to increase the inhibitory signals from the medial globus pallidus to the thalamus, which in turn...
- <u>Decreases</u> excitatory signals from thalamus to cerebral cortex

increased thalamic inhibition = decreased cortical excitation

Functional domains influenced by basal ganglia pathways

Motor loops

- Classical motor loop (primary motor cortex/dorsal striatum)
- Premotor (premotor cortex and supplementary motor cortex/dorsal striatum)
- Oculomotor (frontal eye fields/dorsal striatum)
- Associative loop
 - Dorsolateral prefrontal cortex/dorsal striatum
 - Cognitive domain planning future behavior, procedural learning
- Limbic loop
 - Medial and orbital frontal cortex/ventral striatum
 - Mood, emotions, reward-guided behaviors
- Multiple interconnections between these functional loops

SOUTHWESTERN Web Curriculum

Disorders of the basal ganglia

General considerations

- Historically, have provided important insights into the role of basal ganglia in **normal movement**
- Classical motor abnormalities can be broadly divided into
 - Hyperkinetic disturbances
 - Hypokinetic disturbances
- Many of motor manifestations can be explained in terms of derangements in the direct and indirect motor pathways
- Clinical manifestations of basal ganglia disorders often include more than pure motor abnormalities

Hemiballism

- A prototypic **hyperkinetic** basal ganglia disorder
- Uncontrolled, spontaneous, flinging movements of an entire limb, often developing acutely
- Classically caused by injury to contralateral subthalamic nucleus (usually ischemic)
- What derangements in basal ganglia circuitry account for the unilateral hyperkinesis?

Hemiballism (hemiballismus)

Huntington Disease

- Abnormal expansion of CAG tandem repeats in *huntingtin* gene (chromosome 4p)
 - Normal ~20
 - HD >40
- Accumulation of **excess polyglutamine residues** in huntingtin protein
- Progressive loss of GABAergic medium spiny neurons in striatum
 - Preferential loss of **D2 neurons** in classical ("hyperkinetic") cases
 - Loss of both D2 and D1 neurons in akinetic/rigid variants and in later stages of classical cases
- Manifestations include
 - Movement disorders (choreiform movements in classical cases; rigidity in early onset cases or later in course of classical disease)
 - Neuropsychiatric disturbances (often antedate motor abnormalities)

Parkinson's disease (PD)

- A prototypic **hypokinetic** basal ganglia disorder
- One of a growing family of α-synucleinopathies
 - Sporadic PD
 - Genetic PD variants
 - Diffuse Lewy body disease
 - Multiple systems atrophy
- Classical PD associated with a selective loss of dopaminergic projections to striatal medium spiny neurons (D1 and D2 subsets)
- Manifestations include
 - Hypokinesia / rigidity
 - Postural instability
 - Resting tremor
 - Autonomic dysfunction
 - Behavioral / cognitive disturbances

View from Skyline Drive, Shenandoah National Park

